Quantitative PCR Analysis of Double-Stranded RNA-Mediated Gene Silencing in Fungi

  1. de Vega-Bartol, José J.
  2. Tello, Vega
  3. Niño, Jonathan
  4. Casado, Virginia
  5. Díaz-Mínguez, José M. 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Libro:
Laboratory Protocols in Fungal Biology: Current Methods in Fungal Biology

ISBN: 9781461423553

Año de publicación: 2012

Páginas: 279-287

Tipo: Capítulo de Libro

DOI: 10.1007/978-1-4614-2356-0_22 GOOGLE SCHOLAR

Resumen

Gene silencing in fungi produces a range of phenotypes based on the different amounts of target mRNA that are degraded by the RNAi machinery in each transformed strain. Detection of this range of variation when analysing groups of transformants requires a fast and sensitive method. Quantitative or real time PCR of reverse-transcribed target mRNA is particularly well suited for this analysis

Referencias bibliográficas

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811
  • Salame TM, Ziv C, Hadar Y, Yarden O (2011) RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 89:501–512
  • Liu H, Cottrell T, Pierini L, Goldman W, Doering T (2002) RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160:463–470
  • Ngô H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A 95:14687–14692
  • Janus D, Hoff B, Hofmann E, Kück U (2007) An efficient fungal RNA-silencing system using the DsRed reporter gene. Appl Environ Microbiol 73:962–970
  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582
  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39
  • Thellin O, ElMoualij B, Heinen E, Zorzi W (2009) A decade of improvements in quantification of gene expression and internal standard selection. Biotechnol Adv 27:323–333
  • Vandesompele J, Kubista M, Pfaffl M (2009) Reference gene validation software for improved normalization. In: Logan J, Edwards K, Saunders N (eds) Real-time PCR: current technology and applications. Caister Academic, Norwich, pp 47–64
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1–research0034.11
  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498
  • Van Maerken T, Mestdagh P, De Clercq S, Pattyn F, Yigit N, De Paepe A et al (2009) Using real-time qPCR to evaluate RNAi-mediated gene silencing. In: BioTechniques protocol guide 2009. p. 47. Biotechniques, NY, USA. DOI: 10.2144/000113006
  • Schmittgen T, Livak K (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108
  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25:402–408
  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45
  • Ramakers C, Ruijter J, Deprez R, Moorman A (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66
  • Ruijter J, Ramakers C, Hoogaars W, Karlen Y, Bakker O, van den Hoff M et al (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):e45
  • Nordgård O, Kvaløy JT, Farmen RK, Heikkilä R (2006) Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision. Anal Biochem 356:182–193
  • Huggett J, Dheda K, Bustin S, ZumLa A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284
  • Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139
  • Antonov J, Goldstein DR, Oberli A, Baltzer A, Pirotta M, Fleischmann AR et al (2005) Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest 85:1040–1050
  • Nolan T, Bustin SA (2004) Pitfalls of Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction. J Biomol Tech 15:155
  • Stahlberg A (2004) Properties of the Reverse Transcription Reaction in mRNA Quantification. Clin Chem 50:509–515
  • Bustin S, Benes V, Garson J, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611
  • Bustin S, Beaulieu J, Huggett J, Jaggi R, Kibenge F, Olsvik P et al (2010) MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74
  • Ramos B, Alves-Santos FM, García-Sánchez MA, Martín-Rodrigues N, Eslava AP, Díaz-Mínguez JM (2007) The gene coding for a new transcription factor (ftf1) of Fusarium oxysporum is only expressed during infection of common bean. Fungal Genet Biol 44:864–876
  • de Vega-Bartol JJ, Martín-Domínguez R, Ramos B, García-Sánchez MA, Díaz-Mínguez JM (2011) New virulence groups in Fusarium oxysporum f. sp. phaseoli: the expression of the gene coding for the transcription factor ftf1 correlates with virulence. Phytopathology 101:470–479
  • Alves-Santos F, Ramos B, García-Sánchez MA, Eslava AP, Díaz-Mínguez JMA (2002) DNA-based procedure for in-planta detection of Fusarium oxysporum f. sp. phaseoli. Phytopathology 92(3):237–244