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Abstract

Hurwitz found the Fourier expansion of the Bernoulli polynomials over a century ago. In
general, Fourier analysis can be fruitfully employed to obtain properties of the Bernoulli
polynomials and related functions in a simple manner. In addition, applying the tech-
nique of Möbius inversion from analytic number theory to Fourier expansions, we derive
identities involving Bernoulli polynomials, Bernoulli numbers, and the Möbius function;
this includes formulas for the Bernoulli polynomials at rational arguments. Finally, we
show some asymptotic properties concerning Bernoulli and Euler polynomials.
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1. Introduction

The Bernoulli polynomials, which play an important role in Analytic Number Theory,
are usually defined by means of the generating function

tetx

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
.
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The polynomial Bk(x) is monic and has degree k. For example, B0(x) = 1, B1(x) = x− 1
2 .

Although there are no closed formulas for the kth Bernoulli polynomial, the uniqueness
theorem for power series expansions allows one to easily prove various properties regard-
ing them. Among these we recall the following:

B′k+1(x) = (k + 1)Bk(x) (1.1)

and
Bk(1− x) = (−1)kBk(x). (1.2)

In 1890, Hurwitz found the Fourier expansions

B2k(x) =
2(−1)k−1(2k)!

(2π)2k

∞∑
n=1

cos(2πnx)

n2k
, x ∈ [0, 1), k ≥ 1; (1.3)

B2k+1(x) =
2(−1)k−1(2k + 1)!

(2π)2k+1

∞∑
n=1

sin(2πnx)

n2k+1
, x ∈ [0, 1), k ≥ 0. (1.4)

The Bernoulli numbers are given by Bk = Bk(0). For odd indexes, we have

B2k+1(0) = 0, k ≥ 1. (1.5)

An immediate consequence of the Fourier expansions for the Bernoulli polynomials, prob-
ably the most well-known, is the connection between the Bernoulli numbers and the values
of the Riemann zeta function at the positive even integers. Indeed, one only needs to set
x = 0 in the first formula to obtain

B2k =
2(−1)k−1(2k)!

(2π)2k
ζ(2k).

The following formula, using Möbius inversion, is also well-known:

∞∑
n=1

µ(n)

n2k
=

1

ζ(2k)
⇐⇒ 1 =

(2π)2k

2(−1)k−1(2k)!

∞∑
n=1

µ(n)

n2k
B2k.

Indeed, Möbius inversion shows 1 = ζ(s)
∑∞
n=1

µ(n)
ns for any complex s with Re(s) > 1.

However, leaving s = 2k fixed, we can instead generalize the formula to

cos(2πx) =
(2π)2k

2(−1)k−1(2k)!

∞∑
n=1

µ(n)

n2k
B2k({nx}), (1.6)

where {x} denotes the fractional part of x. This expression, which provides a nice
approximation to the cosine by means of polynomials, is a consequence of a more general
type of Möbius inversion, discussed by two of the authors in [10]. In this case, it involves
the inversion of Fourier series. The analogous result for odd Bernoulli polynomials also
holds. In addition, we find a similar formula involving Euler polynomials. All of this is
discussed in Section 2.
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In Section 3, we consider the relations obtained by evaluating (1.3) and its Möbius
inverse (1.6) at rational values. One obtains, in an elementary manner, expressions for
combinations of sums of the form∑

n≡r (m)

1

n2k
,

∑
n≡r (m)

µ(n)

n2k

(where n ≡ r (m) is a shorthand for n ≡ r (mod m)) in terms of values of the Bernoulli
polynomials at these rational arguments.

In Section 4, we obtain the asymptotic behavior of the Bernoulli polynomials on [0, 1]
from formulas (1.3) and (1.4). This result is not new, however, our proof is simpler, and
in addition we also study the rate of convergence.

Throughout the paper, we will use bxc to denote the integer part (also known as
floor) of x ∈ R (i.e., bxc is the largest integer ≤ x); then, the fractional part of x will be
{x} = x− bxc.

2. Möbius inversion formulas

2.1. Arithmetical Möbius inversion

In Number Theory, an arithmetical function is typically simply a function α : N→ R
(or C). An arithmetical function α is completely multiplicative if it satisfies α(nm) =
α(n)α(m) for all n,m ∈ N and is not the zero function. Given two arithmetical functions
α and β, their Dirichlet convolution (also called Dirichlet product) α ∗ β is defined by

α ∗ β(n) =
∑
d|n

α(d)β
(n
d

)
=
∑
d|n

α
(n
d

)
β(d) =

∑
ab=n

α(a)β(b),

where
∑
d|n represents the sum over all divisors d of n. Dirichlet convolution is a com-

mutative and associative operation on arithmetical functions, with identity the delta
function at 1, i.e. δ(1) = 1 and δ(n) = 0 if n 6= 1. An arithmetical function α is invertible
with respect to Dirichlet convolution if and only if α(1) 6= 0. In this case the unique
function β such that α ∗ β = β ∗ α = δ is referred to as the (Dirichlet) inverse of α, and
we use the standard notation α−1 to denote it.

A fundamental role in the theory is played by the Möbius function µ, which is the
Dirichlet inverse of the constant function 1. It is given by

µ(1) = 1,

µ(n) = 0 if n has a squared factor,

µ(p1p2 · · · pk) = (−1)k when p1, p2, . . . , pk are distinct primes.

For a general invertible arithmetical function α, its Dirichlet inverse may be computed
recursively, but it is often difficult to deduce a simple closed expression for α−1. An easy
exception is when α is completely multiplicative, since then α−1 = µα (the pointwise
product).

The Möbius Inversion Formula most often refers to the equivalence β = α∗1 ⇔ α =
β ∗ µ, which is an immediate algebraic consequence of the facts stated above, and which
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may be written explicitly as

β(n) =
∑
d|n

α(d) ⇐⇒ α(n) =
∑
d|n

µ(n/d)β(d).

2.2. Möbius inversion of Fourier series

For our purposes, we need a variation on the inversion theme of a more analytic
nature, belonging to a class of formulas also referred to as Möbius inversion. We shall
restrict ourselves to the case of Fourier series. Suppose we have a real-variable function
f expanded in a Fourier series,

f(x) =

∞∑
n=1

α(n)e2πinx.

Regard the Fourier coefficients α(n) as an arithmetical function. Now consider any
arithmetical function β, and form the “generalized convolution”

(β � f)(x) =

∞∑
m=1

β(m)f(mx).

Substituting the Fourier series for f into this expression, one finds formally that

(β � f)(x) =

∞∑
m=1

β(m)

∞∑
n=1

α(n)e2πinmx =

∞∑
m,n=1

α(n)β(m)e2πinmx

=

∞∑
l=1

(∑
mn=l

α(n)β(m)

)
e2πilx =

∞∑
l=1

(α ∗ β)(l)e2πilx.

Thus β � f is the Fourier series with coefficients given by the Dirichlet convolution of α
and β. Now, if α is invertible and we take β = α−1, so that α ∗ β = δ, this reduces to

e2πix = (α−1 � f)(x), (2.1)

so we have an expansion of the exponential in terms of the function f whose Fourier series
we started out with. Note also that the Fourier series itself is the generalized convolution
of the Fourier coefficients with the function E(x) = e2πix, namely f = α � E. In fact
formally one has in general that α � (β � g) = (α ∗ β) � g for any function g and
arithmetical functions α, β, and the inversion relation f = α� g ⇔ g = α−1 � f .

Remark 1. Justifying the formal steps above is not hard in the case of a bounded function
such as e2πix. It is enough for the double series to converge absolutely, which is implied
by
∑∞
m,n=1 |α(n)β(m)| < ∞. Note that this is equivalent to

∑∞
l=1(|α| ∗ |β|)(l) < ∞. In

particular, the inversion formula (2.1) holds if
∑∞
l=1(|α| ∗ |α−1|)(l) < ∞. In the case of

a completely multiplicative function α, since α−1 = µα and |µ| ≤ 1, it is sufficient to
check if

∑∞
l=1(|α| ∗ |α|)(l) <∞.

By taking real and imaginary parts, we obtain analogous formulas involving the func-
tions sin(2πx) and cos(2πx). In this guise, the idea of applying Möbius inversion to
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Fourier series goes at least as far back as Chebyshev [8] and appears recently in [9] in a
study of a lattice problem in Physics.

Let us mention that the above results are special cases of a general theory which
extends far beyond the case of Fourier series and which seems to originate with a little-
known idea of Cesàro [7], rediscovered on occasion, for example in [6]. The interested
reader may consult [4] for an abstract formulation, [5] for a series of concrete exam-
ples, [10] for an inversion formula involving Chebyshev polynomials, and [2] as a general
reference for analytic number theory.

If we want to obtain concrete approximation results from formulas such as (2.1), we
need to have an expression for the Dirichlet inverse of the Fourier coefficients that we can
work with, and the best case of this occurs when they are completely multiplicative. Now,
this certainly does not happen in general. For this reason, it is an interesting question to
determine which functions do indeed give completely multiplicative Fourier coefficients,
at least modulo constant factors. This happens, for instance, in the case of the square and
triangular waves, which were the examples studied by Chebyshev. Perhaps surprisingly,
this also happens with a well-known family of functions: the Bernoulli polynomials.

2.3. Möbius inversion of the Fourier series of the Bernoulli polynomials

The Bernoulli polynomials Bk(x) play an important role in various expansions and
approximation formulas which are useful both in analytic number theory and in classical
and numerical analysis. These polynomials can be defined by various methods depending
on the applications (see [12] and the references therein).

The Fourier expansions (1.3) and (1.4) are actually valid for 0 ≤ x ≤ 1, and the
convergence is absolute and uniform on [0, 1], except for B1(x) that requires 0 < x < 1.
For the time being, we disregard B1(x) and also B0(x). From (1.5) and (1.2), it is clear
that

Bk(0) = Bk(1), k ≥ 2,

so we can construct the periodic extension of Bk(x) on [0, 1] to R by taking fractional
parts {x} = x− bxc and using Bk({x}) instead of Bk(x); these [0, 1]-periodic extensions
are continuous. Then, (1.3) and (1.4) for k ≥ 1 become

B2k({x}) =
2(−1)k−1(2k)!

(2π)2k

∞∑
n=1

cos(2πnx)

n2k
, x ∈ R, (2.2)

B2k+1({x}) =
2(−1)k−1(2k + 1)!

(2π)2k+1

∞∑
n=1

sin(2πnx)

n2k+1
, x ∈ R. (2.3)

Now, applying the real versions of (2.1), we obtain the following.

Theorem 2.1. For every k ≥ 1, the functions cosine and sine expand in terms of the
Bernoulli polynomials B2k and B2k+1, respectively, as

cos(2πx) =
(−1)k−1(2π)2k

2(2k)!

∞∑
n=1

µ(n)B2k({nx})
n2k

, x ∈ R, (2.4)

sin(2πx) =
(−1)k−1(2π)2k+1

2(2k + 1)!

∞∑
n=1

µ(n)B2k+1({nx})
n2k+1

, x ∈ R. (2.5)
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Proof. This is a special case of (2.1). Up to constants, we are dealing with the arith-
metical functions αs(n) = n−s, which are completely multiplicative for any s ∈ C
(here s = 2k or 2k + 1). Hence α−1

s = µαs. The constants simply affect inver-
sion by (cαs)

−1 = c−1µαs and of course do not affect the convergence that justifies
the inversion. As for the convergence itself, by Remark 1, it is enough to show that∑∞
n=1(|αs| ∗ |αs|)(n) < ∞. This is true whenever σ = Re(s) > 1, since |αs(n)| = ασ(n)

and (ασ ∗ασ)(n) =
∑
k|n k

−σ(n/k)−σ =
∑
k|n n

−σ = d(n)n−σ, where d(n) is the number

of divisors of n. A standard result from Analytic Number Theory states that d(n) = o(nε)
for any ε > 0. Hence (ασ ∗ ασ)(n) = O(n−σ+ε) and so

∑∞
n=1(ασ ∗ ασ)(n) converges by

comparison with the zeta series.

2.4. Special values

In Analytic Number Theory one often obtains interesting arithmetical results by
evaluating relations involving transcendental functions at rational arguments. Since e2πix

is a root of unity, hence an algebraic number, when x is rational, its imaginary part
sin(2πx) is also algebraic. A “nice” expression for this algebraic number exists, for
example, when it is constructible, in the sense of Galois Theory, and the most famous
case of this is x = 1/17, corresponding to the construction of the regular 17-gon found
by Gauss. Algebraically this means that cos(2π/17) has an expression in nested square
roots. Applying the first formula of Theorem 2.1 to x = 1/17 and, for simplicity, to the
lowest valid value of k, that is k = 1, yields, after evaluating B2(r/17),

− 1 +
√

17 +

√
34− 2

√
17 + 2

√
17 + 3

√
17−

√
34− 2

√
17− 2

√
34 + 2

√
17

=
23π2

3 · 172

∞∑
n=1

µ(n)β(n)

n2

where

β(n) =



289, if n ≡ 0 (mod 17),

193, if n ≡ ±1 (mod 17),

109, if n ≡ ±2 (mod 17),

37, if n ≡ ±4 (mod 17),

−23, if n ≡ ±4 (mod 17),

−71, if n ≡ ±5 (mod 17),

−107, if n ≡ ±6 (mod 17),

−131, if n ≡ ±7 (mod 17),

−143, if n ≡ ±8 (mod 17).

This is the kind of “explicit formula” one can obtain with these methods. Note the
amount and variety of mathematics that goes into this result: the ideas of Bernoulli,
Cesàro, Chebyshev, Dirichlet, Euler, Fourier, Galois, Gauss, Hurwitz and Möbius are all
involved.
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2.5. The case of Euler polynomials

In a way similar to their cousins the Bernoulli polynomials, the Euler polynomials
are defined by means of the generating function

2e2tx

et + 1
=

∞∑
k=0

Ek(x)
tk

k!
,

which is convergent for |t| < π.
For 0 ≤ x ≤ 1 (0 < x < 1 in the case of E0(x)), the Euler polynomials have Fourier

expansions also similar to those of the Bernoulli polynomials:

E2k−1(x) =
4(−1)k(2k − 1)!

π2k

∞∑
n=0

cos((2n+ 1)πx)

(2n+ 1)2k
, k ≥ 1, (2.6)

E2k(x) =
4(−1)k(2k)!

π2k+1

∞∑
n=0

sin((2n+ 1)πx)

(2n+ 1)2k+1
, k ≥ 0. (2.7)

Let us find the Möbius inverse of these series. By denoting

αk(j) =

{
0 if j is even,

1
(2n+1)k

if is odd, j = 2n+ 1,

we can write E2k−1(x) in (2.6) as a constant times
∑∞
j=1 α2k(j) cos(jπx), and similarly

for (2.7). Moreover, the function αk is completely multiplicative, so its Dirichlet inverse
is α−1

k = µαk.
Extending Ek(x) from [0, 1] to R is only a bit more complicated than for Bk(x). The

extension that is compatible with (2.6) and (2.7) is (−1)bxcEk({x}). Then, in a manner
entirely similar to Theorem 2.1, we deduce the following.

Theorem 2.2. For every k ≥ 1, the functions cosine and sine expand in terms of the
Euler polynomials E2k−1 and E2k, respectively, as

cos(πx) =
(−1)kπ2k

4(2k − 1)!

∞∑
n=0

µ(2n+ 1)(−1)b(2n+1)xcE2k−1({(2n+ 1)x})
(2n+ 1)2k

, x ∈ R,

sin(πx) =
(−1)kπ2k+1

4(2k)!

∞∑
n=0

µ(2n+ 1)(−1)b(2n+1)xcE2k({(2n+ 1)x})
(2n+ 1)2k+1

, x ∈ R.

3. Sums of restricted zeta series and their Möbius inverses

The evaluation of (2.2), (2.3) and their inverses (2.4), (2.5) at rational arguments
x = r/m introduces a periodicity modulo m into the sums which on rearrangement by
residue classes causes the following sums to appear:

Mm(k, r) =
∑

n≡r (m)

µ(n)

nk
, Zm(k, r) =

∑
n≡r (m)

1

nk
, r = 0, 1 . . . ,m− 1, (3.1)
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where k, m ∈ N, k, m ≥ 2 and the sums are always over positive integers (thus the sum
defining Mm(k, 0) begins at n = m).

These sums are related to the Prime Number Theorem for arithmetic progressions.
Using techniques from Analytic Number Theory, the sums Z and M can be expressed in
terms of L-series for Dirichlet characters. Here we show that, starting from the Fourier
expansions of the Bernoulli polynomials and their Möbius inverses, certain sums and
differences of M and Z over a symmetric pair ±r of residue classes modulo m can be
evaluated explicitly by elementary and computationally feasible means, using only linear
algebra, as a consequence of another auxiliary result involving matrices defined by the
Bernoulli polynomials Bk and the cosine function. This approach is in the spirit of one of
the problems dealt with in [11], which studies the case k = 1, and, as is amply discussed
there, is interesting in its own right.

We concentrate on the case of an even power 2k mostly, since we make use of the
evaluation of ζ(2k) in several places, but in the last part of this section we also derive
some results for an odd power 2k + 1.

The methods employed in this section may also be used to derive results for Euler
polynomials and Euler numbers which are analogous to those we obtain for Bernoulli
polynomials and Bernoulli numbers. We have chosen to illustrate the method with the
latter to allow an easier comparison with results in the literature, and for reasons of space
the corresponding formulas for Euler polynomials are left to the reader.

3.1. Linear relations among values at rational arguments

Trivially, we have

m−1∑
r=0

Mm(k, r) =
1

ζ(k)
,

m−1∑
r=0

Zm(k, r) = ζ(k), Zm(k, 0) =
1

mk
ζ(k).

Let us introduce notation for the constants which appear in the Fourier expansions of
the Bernoulli polynomials,

C(k) =
(−1)k−1(2π)2k

2(2k)!
, D(k) =

(−1)k−1(2π)2k+1

2(2k + 1)!
.

Fixing k and m, let
ω = bm/2c

and define, for odd m,

xi = C(k)(Mm(2k, i) +Mm(2k,m− i)), i = 1, . . . , ω,

xω+1 = C(k)Mm(2k, 0),

yi = C(k)−1(Zm(2k, i) + Zm(2k,m− i)), i = 1, . . . , ω,

yω+1 = C(k)−1Zm(2k, 0),

and for even m, the same expressions except that at i = ω = m/2 we take

xm/2 = C(k)Mm(2k,m/2), ym/2 = C(k)−1Zm(2k,m/2)

and not twice this expression as the previous formulas would indicate. Note that in fact
ζ(2k) = C(k)B2k, and hence

yω+1 = B2k/m
2k. (3.2)
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Proposition 3.1. Let m ∈ N, m ≥ 2, and k ∈ N. Then

cos(2πr/m) =

ω∑
j=1

B2k

({
jr

m

})
xj +B2kxω+1, r = 0, 1, . . . , ω, (3.3)

B2k(r/m) =

ω∑
j=1

cos

(
2π
jr

m

)
yj + yω+1, r = 0, 1, . . . , ω. (3.4)

Proof. (3.3) follows immediately by evaluating (2.4) at the m arguments x = r/m, r =
0, . . . ,m − 1, grouping the series by residues modulo m and taking into account the
symmetry B2k(1− x) = B2k(x). (3.4) is obtained in exactly the same way via (2.2) and
cos(2π(1− x)) = cos(2πx).

Remark 2. The equations (3.4) give formulas for the values of Bernoulli polynomials
at rational arguments, but they are not very satisfactory as they involve the terms yi
for which there are no simple expressions (with the exception of yω+1 = B2k/m

2k). In
fact, (3.4) are practically the content of the paper [13], where the matter is not taken
any further; a posterior paper that deals with this matter and related topics is [15].
Here we are going to show some of their applications, as well as those of their “Möbius
inverses” (3.3).

3.2. Evaluation of Mm(2k, 0) by elementary methods

The next step is to show that one can evaluate xω+1 = C(k)Mm(2k, 0) explicitly.
This can be done with Dirichlet series and characters, but in fact it is not too difficult
to give a nice alternative elementary proof, as we proceed to show.

Theorem 3.2. Let m = p1 · p2 · · · pl where the pi are distinct primes, and let k ∈ N.
Then

xω+1 =
(−1)k−1(2π)2k

2(2k)!

∞∑
n=1

µ(mn)

(mn)2k
=

1

B2k

l∏
i=1

1

1− p2k
i

. (3.5)

If m is not squarefree, xω+1 = 0 trivially since µ(mn) = 0 for all n ∈ N.

Proof. The statement is equivalent to Mm(2k, 0) = ζ(2k)−1
∏l
i=1(1 − p2k

i )−1. We shall
prove a general formula

∑
n≡0 (m)

µ(n)

ns
=

∞∑
n=1

µ(mn)

(mn)s
=

ζ(s)−1∏l
i=1(1− psi )

for any complex number s with Re(s) > 1. Consider everything fixed except m and
denote this sum by S(m). Note that, by definition of µ,

µ(mn) =

{
(−1)lµ(n) if no pi divides n,

0 if some pi divides n.

For l = 1, the case where m is equal to a prime p, the formula simply states S(p) =
ζ(s)−1(1 − ps)−1 and we have µ(pn) = −µ(n) or 0 according to n 6≡ 0 (p) or n ≡ 0 (p).

9



Thus

S(p) = − 1

ps

∑
n 6≡0 (p)

µ(n)

ns
= − 1

ps

∑
n

µ(n)

ns
−

∑
n≡0 (p)

µ(n)

ns


= − 1

ps
(ζ(s)−1 − S(p)),

and hence S(p) = ζ(s)−1(1− ps)−1 follows immediately.
The general case can be proved by induction on l, applying the inclusion-exclusion

formula. In general, S(p1p2 · · · pl) will appear as a combination of itself and all the sums
S(pi1pi2 · · · pit) with distinct indices ij and 0 ≤ t < l. For example, for l = 2, if m = pq
with p, q distinct primes, we have

S(pq) =
1

psqs

∑
n 6≡0 (p), n 6≡0 (q)

µ(n)

ns
=

1

psqs
(
ζ(s)−1 − S(p)− S(q) + S(pq)

)
,

hence, substituting the values for S(p) and S(q), we can solve for S(pq), yielding the
corresponding formula.

3.3. Solution of the “Bernoulli system” of linear equations

Once we have elementary formulas for the terms xω+1 (Theorem 3.2) and yω+1 (equa-
tion (3.2)), the system of equations (3.3) and (3.4) may be considered as involving only
the unknowns xj and yj for j = 1, . . . , ω,

cos(2πr/m)−B2k xω+1 =

ω∑
j=1

B2k

({
jr

m

})
xj , r = 1, . . . , ω, (3.6)

B2k(r/m)− B2k

m2k
=

ω∑
j=1

cos

(
2π
jr

m

)
yj , r = 1, . . . , ω. (3.7)

The associated matrices will be denoted by

B2k,m =

(
B2k

({
ij

m

}))ω
i,j=1

, Cosm =

(
cos

(
2π
ij

m

))ω
i,j=1

. (3.8)

Let us show, with a small caveat, that these matrices are regular. Indeed we compute
the determinant of the cosine matrix explicitly in closed form.

Theorem 3.3. Let m ∈ N. Then

det(Cos2m+1) = (−1)b
m+1

2 c
(2m+ 1)(m−1)/2

2m
,

det(Cos2m) = (−1)b
m+1

2 c
(m

2

)(m−1)/2

.

In the odd case, if U is the square matrix of order m whose entries are all 1, then

Cos−1
2m+1 =

4

2m+ 1
(−U + Cos2m+1) ;

10



and, in the even case, Cos−1
2m = (ai,j), where

ai,j =


2
m (−1 + cos(πij/m)), if i, j < m,

1
m (−1 + cos(πij/m)), if j < i = m or i < j = m,

1
2m (−1 + cos(πij/m)), if i = j = m.

Proof. We assume m is odd; the even case is similar. Replace the last row with the sum
of every row and move it up to the first row. It is easy to show that

ω∑
r=1

cos

(
2π
jr

m

)
=

{
−1/2, if m is odd,

((−1)j − 1)/2, if m is even,

hence we obtain∣∣∣∣∣∣∣∣∣
cos( 2π

2m+1 ) cos( 4π
2m+1 ) · · · cos( 2mπ

2m+1 )

· · · · · · · · · · · ·
cos( 2(m−1)π

2m+1 ) cos( 4(m−1)π
2m+1 ) · · · cos( 2m(m−1)π

2m+1 )

cos( 2mπ
2m+1 ) cos( 4mπ

2m+1 ) · · · cos( 2m2π
2m+1 )

∣∣∣∣∣∣∣∣∣
= −1

2
(−1)m−1

∣∣∣∣∣∣∣∣
1 1 · · · 1

cos( 2π
2m+1 ) cos( 4π

2m+1 ) · · · cos( 2mπ
2m+1 )

· · · · · · · · · · · ·
cos( 2(m−1)π

2m+1 ) cos( 4(m−1)π
2m+1 ) · · · cos( 2m(m−1)π

2m+1 )

∣∣∣∣∣∣∣∣ .
Now, since

cos(kx) = 2k−1 cosk x+
∑
i<k

αk,i cos(ix), k ≥ 2,

for appropriate coefficients αk,i, it follows immediately that the last determinant is the
same as the following Vandermonde determinant:

(−1)m4 · 6 · · · 2m−2

∣∣∣∣∣∣∣∣
1 1 · · · 1

cos( 2π
2m+1 ) cos( 4π

2m+1 ) · · · cos( 2mπ
2m+1 )

· · · · · · · · · · · ·
cosm−1( 2π

2m+1 ) cosm−1( 4π
2m+1 ) · · · cosm−1( 2mπ

2m+1 )

∣∣∣∣∣∣∣∣ ,
and hence, we obtain the formula

det(Cos2m+1) = (−1)m−14 · 6 · · · 2m−2
∏
i<j

(
cos

(
2πj

2m+ 1

)
− cos

(
2πi

2m+ 1

))
.

Since cosine is decreasing on (0, π) it is easy to calculate the sign of this determinant.
We compute its absolute value by squaring the matrix and taking square roots. Indeed,
it is straightforward to compute the matrix Cos2

2m+1 by expressing the resulting sums
of products of cosines as the real parts of geometric series of complex exponentials. We
omit the details. The result is

m
2 −

1
4 −1/2 · · · −1/2

−1/2 m
2 −

1
4 · · · −1/2

· · · · · · · · · · · ·
−1/2 −1/2 · · · m

2 −
1
4
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and the determinant of this matrix is easily found to be

det(Cos2
2m+1) =

1

2

(
m

2
+

1

4

)m−1

.

Putting everything together one finally obtains the first formulas in the statement of the
theorem.

Finally, it is easy to see that the inverse of the matrix Cos2
2m+1 is

Cos−2
2m+1 =

8

2m+ 1


3
2 1 · · · 1
1 3

2 · · · 1
· · · · · · · · · · · ·
1 1 · · · 3

2

 .

If we ignore the constant and multiply this last matrix by Cos2m+1 then, taking into
account that the column sums in this matrix are all equal to − 1

2 , it is clear that the

(i, j)th entry in the product is − 1
2 + 1

2 cos( 2πij
2m+1 ). Hence,

Cos−1
2m+1 = Cos−2

2m+1 ·Cos2m+1 =
8

2m+ 1

(
−1

2
U +

1

2
Cos2m+1

)
.

The explicit formulas in Theorem 3.3 allow us to solve the system (3.7) for any m.
We shall briefly sketch the result for odd m. The even case is similar, but the expressions
that appear are longer. The main point here, in any case, is not the resulting explicit
formulas for symmetric combinations of Z series, which may be obtained by several other
methods, but rather those for M series (see Remark 3 below).

So, when m is odd, Theorem 3.3 implies that the solutions of the system of linear
equations (3.7) are

yr =
4

m

ω∑
i=1

(
−1 + cos

(
2πir

m

))(
B2k

(
i

m

)
− B2k

m2k

)
for each r = 1, . . . , ω. This expression may be simplified considerably by using the
following result.

Proposition 3.4. Let m ≥ 2 and k ∈ N. Then

ω∑
i=1

B2k

(
i

m

)
=

{
B2k

2

(
m1−2k − 1

)
, if m is odd,

B2k

2

(
m1−2k + 21−2k − 2

)
, if m is even.

Proof. This follows from the multiplication formula

Bn(mx) = mn−1
m−1∑
j=0

Bn(x+ j/m)

(see, for instance, [1, formula 23.1.10, p. 804]), which is easily proven by using the
generating function and the cyclotomic equation.

12



We then obtain the following explicit expression:

Proposition 3.5. Let m be an odd integer equal to or greater than 3 and k ∈ N. Then

∑
n≡±r (m)

1

n2k
=

(−1)k−1(2π)2k

2 (2k)!

 2

m
B2k +

4

m

(m−1)/2∑
i=1

cos

(
2πir

m

)
B2k

(
i

m

)
for each r = 1, . . . , (m− 1)/2.

As explained above, a similar formula would arise for even m, but we omit it.

Remark 3. We have not found the formulas in Theorem 3.3 in the literature. On the
other hand, Proposition 3.5 can be obtained directly from (2.2) by a straightforward
argument consisting of inverting the discrete Fourier transform of m-periodic even se-
quences (see [3]). The method described in [3] allows one to sum periodic Dirichlet series
in general and does not require separate arguments according to the parity of m. How-
ever, the approach in [3] does not reveal the regularity of (3.7) and the explicit formula
for the inverse of the cosine matrix. In addition, since µ(n) is not periodic, the method
does not provide elementary expressions for the xr starting from (2.4), i.e. for the series∑

n≡±r (m)

µ(n)

n2k
.

The approach we give here shows that these sums may be obtained in a similar manner,
that is, by proving the regularity of (3.6), using a similar argument to that which we
have given for ∑

n≡±r (m)

1

n2k
,

except one must replace the matrix Cosm with B2k,m.
To this end, we note that by the results to be proved independently in the next section

regarding the asymptotic behavior of the Bernoulli polynomials, we have

lim
k→∞

(
(−1)k−1(2π)2k

2(2k)!

)ω
det(B2k,m) = det(Cosm),

and hence the regularity of the matrix Cosm implies that of B2k,m, at least for k suf-
ficiently large (this is the small caveat we mentioned). We conjecture that this is true
for all k ∈ N, although a direct approach along the lines of that used for the cosine
matrices does not seem straightforward. For instance, in [11], the rank of the matrix of
fractional parts ({ij/m})mi,j=1 is found to depend on the number of divisors of m. Since
B1(x) = x− 1/2, this is related to the odd exponent case k = 1 of our problem.

To sum up, recalling what xj is, we may state the following.

Proposition 3.6. Let m, k ∈ N, m ≥ 3, k � 0. The value of∑
n≡±r (m)

µ(n)

n2k
, r = 1, . . . , bm/2c,

is π−2k times a rational linear combination of the values of cos(2πx) at the rational
arguments x = j/m, j = 0, 1, . . . , bm/2c.

13



Thus, for example, we have∑
n≡±1 (9)

µ(n)

n2
=

9

π2

(
1

4
+ cos

π

9
− 1

2
cos

4π

9

)
.

3.4. Some remarks on the odd power case: 2k + 1

Since B2k+1(1−x) = −B2k+1(x), in the odd power case we need to consider differences
instead of sums. Let m ≥ 3 and define

y′i = D(k)−1(Mm(2k + 1, i)−Mm(2k + 1,m− i)), i = 1, . . . , ω,

where ω = bm/2c if m is odd (just as for the even power case of 2k) and ω = bm/2c − 1
if m is even (one less equation than for 2k); in short

ω = b(m− 1)/2c.

We have two systems of linear equations analogous to (3.7) and (3.6), with matrices

B2k+1(m) =

(
B2k+1

({
ij

m

}))ω
i,j=1

, Sinm =

(
sin

(
2π
ij

m

))ω
i,j=1

.

This case is simpler because the square of the sine matrix is easily seen to be diagonal.

Proposition 3.7. For m ≥ 3,

Sin2
m =

m

4
Iω,

where Iω is the identity matrix or order ω.

Reasoning in the same way as in the even power case, we arrive at the following.

Proposition 3.8. Let m, k ∈ N, m ≥ 3. Then

∑
n≡r (m)

1

n2k+1
−

∑
n≡−r (m)

1

n2k+1
=

4

m

(−1)k−1(2π)2k+1

2(2k + 1)!

ω∑
i=1

sin

(
2π
ir

m

)
B2k+1

(
i

m

)
,

for each r = 1, . . . , ω.

Proposition 3.9. Let m, k ∈ N, m ≥ 3, k � 0. The value of∑
n≡r (m)

µ(n)

n2k+1
−

∑
n≡−r (m)

µ(n)

n2k+1

is π−(2k+1) times a rational linear combination of the values sin(2πx) at the rational
arguments x = j/m, 0 ≤ j ≤ m− 1.
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4. Asymptotic formulas for the Bernoulli and Euler polynomials

Let us recall that we require knowing the asymptotic behavior of the Bernoulli and
Euler polynomials in order to complete the results of the previous section, by showing
that the matrices we defined there in terms of the values at rational numbers of a given
Bernoulli polynomial Bk, are invertible for k � 0. This asymptotic behavior is well-
known (see [14]):

lim
k→∞

(−1)k−1(2π)2k

2(2k)!
B2k(x) = cos(2πx), x ∈ [0, 1], (4.1)

lim
k→∞

(−1)k−1(2π)2k+1

2(2k + 1)!
B2k+1(x) = sin(2πx), x ∈ [0, 1], (4.2)

and

lim
k→∞

(−1)kπ2k

4(2k − 1)!
E2k−1(x) = cos(πx), x ∈ [0, 1], (4.3)

lim
k→∞

(−1)kπ2k+1

4(2k)!
E2k(x) = sin(πx), x ∈ [0, 1], (4.4)

the convergence being uniform on [0, 1]. Indeed, the result generalizes to C, with uniform
convergence on compact sets. Restricting ourselves to [0, 1], as we have done throughout
the paper, we observe that the asymptotic behavior of these polynomial families is an
immediate consequence of their Fourier expansions. Moreover, the Fourier series allow
one to obtain much more information regarding the degree of approximation. Thus, in
this section, we will use the Fourier expansions and elementary estimates to obtain not
only the asymptotic behavior, but also explicit bounds for the differences between the
polynomials and their limits, as well as for the ratios of successive differences.

To simplify notation here and in the results that follow, we let

B̃2k(x) =
(−1)k−1(2π)2k

2(2k)!
B2k(x), B̃2k+1(x) =

(−1)k−1(2π)2k+1

2(2k + 1)!
B2k+1(x),

and

Ẽ2k−1(x) =
(−1)kπ2k

4(2k − 1)!
E2k−1(x), Ẽ2k(x) =

(−1)kπ2k+1

4(2k)!
E2k(x).

Proposition 4.1. The Bernoulli polynomials satisfy

|B̃2k(x)− cos(2πx)| < 2k + 1

2k − 1
· 1

22k
, x ∈ [0, 1], k ≥ 1, (4.5)

|B̃2k+1(x)− sin(2πx)| < k + 1

k
· 1

22k+1
, x ∈ [0, 1], k ≥ 1. (4.6)

Proof. For m ≥ 2 and s ∈ R, s > 1, consider the tail of the zeta series, Zm(s) =∑∞
n=m

1
ns . We have the elementary estimate

Zm(s) =

∞∑
n=m

1

ns
<

∫ ∞
m−1

dx

xs
=

1

(s− 1)(m− 1)s−1
.
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This estimate can be improved by feeding it back into itself:

∞∑
n=m

1

ns
=

1

ms
+

∞∑
n=m+1

1

ns
<

1

ms
+

1

(s− 1)ms−1
=
s− 1 +m

s− 1
· 1

ms
. (4.7)

Consider now the even index case s = 2k. Separating the first term, cos(2πx), in
the Fourier series (1.3), the remaining terms are bounded in absolute value by the tail
Z2(2k), and thus (4.5) follows immediately from (4.7). In the same manner, (4.6) follows
from (1.4).

Proposition 4.2. The Euler polynomials satisfy

|Ẽ2k−1(x)− cos(πx)| < 2k + 1

2k − 1
· 1

22k+1
, x ∈ [0, 1], k ≥ 1,

|Ẽ2k(x)− sin(πx)| < k + 1

k
· 1

22k+2
, x ∈ [0, 1], k ≥ 1.

Proof. The only difference between the proof of this proposition and that of Proposi-
tion 4.1 is that here we need to estimate the tails of the “odd” zeta series Z∗m(s) =∑∞
n=m

1
(2n+1)s for m ≥ 1 and s > 1. A good bound is obtained by simply observing that

2Z∗m(s) = 1
(2m+1)s + 1

(2m+1)s + · · · < 1
(2m)s + 1

(2m+1)s + · · · = Z2m(s), and hence, by (4.7),

∞∑
n=m

1

(2n+ 1)s
<

1

2
· s− 1 + 2m

s− 1
· 1

(2m)s
, m ≥ 1, s > 1. (4.8)

(This is a slightly better bound than that obtained from the estimate Z∗m(s) < (2m)−s+
(2m+ 2)−s + · · · = 2−sZm(s).) The result now follows from (4.8) in the same manner as
Proposition 4.1 follows from (4.7).

Obviously, the asymptotic formulas (4.1), (4.2), (4.3) and (4.4), as well as the uniform
convergence, follow immediately from the previous two propositions.

With the same technique we can also determine the asymptotic rates of decrease of
the error at each successive step in the approximation of both the sine and the cosine by
means of the Bernoulli and Euler polynomials. Namely, we have

lim
k→∞

B̃2k+2(x)− cos(2πx)

B̃2k(x)− cos(2πx)
=

{
1/4 if x ∈ [0, 1] \ { 1

8 ,
3
8 ,

5
8 ,

7
8},

1/9 if x = 1
8 ,

3
8 ,

5
8 or 7

8 ,

lim
k→∞

B̃2k+3(x)− sin(2πx)

B̃2k+1(x)− sin(2πx)
=

{
1/4 if x ∈ (0, 1) \ { 1

4 ,
1
2 ,

3
4},

1/9 if x = 1
4 or 3

4 ,

for the Bernoulli polynomials, and

lim
k→∞

Ẽ2k+1(x)− cos(πx)

Ẽ2k−1(x)− cos(πx)
=

{
1/9 if x ∈ [0, 1] \ { 1

6 ,
1
2 ,

5
6},

1/25 if x = 1
6 or 5

6 ,

lim
k→∞

Ẽ2k+2(x)− sin(πx)

Ẽ2k(x)− sin(πx)
=

{
1/9 if x ∈ (0, 1) \ { 1

3 ,
2
3},

1/25 if x = 1
3 or 2

3 ,

for the Euler polynomials. As with the asymptotic behavior, these results are an imme-
diate consequence of the sharper explicit estimates for these quotients given below.
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Theorem 4.3. For the Bernoulli and Euler polynomials, one has the following estimates.

1. Let x ∈ [0, 1] \ { 1
8 ,

3
8 ,

5
8 ,

7
8}. For k � 0, specifically, when 2k+2

2k−1 ·
(

2
3

)2k
< | cos(4πx)|,

the quotient B̃2k+2(x)−cos(2πx)

B̃2k(x)−cos(2πx)
lies between the two bounds

1

4
·

1∓ | sec(4πx)| · 2k+4
2k+1

(
2
3

)2k+2

1± | sec(4πx)| · 2k+2
2k−1

(
2
3

)2k ,

where the signs are to be taken respectively on top (for the lower bound) and bottom
(for the upper bound). If x = 1

8 ,
3
8 ,

5
8 or 7

8 , then for k ≥ 2, the quotient lies between
the two bounds

1

9
·

1∓
√

2 · 2k+5
2k+1

(
3
4

)2k+2

1±
√

2 · 2k+3
2k−1

(
3
4

)2k .

2. Let x ∈ (0, 1) \ { 1
4 ,

1
2 ,

3
4}. For k � 0, specifically, when 2k+3

2k ·
(

2
3

)2k+1
< | sin(4πx)|,

the quotient B̃2k+3(x)−sin(2πx)

B̃2k+1(x)−sin(2πx)
lies between the two bounds

1

4
·

1∓ | csc(4πx)| · 2k+5
2k+2

(
2
3

)2k+3

1± | csc(4πx)| · 2k+3
2k

(
2
3

)2k+1
.

If x = 1
4 or 3

4 , then for k ≥ 2, the quotient lies between the two bounds

1

9
·

1∓ k+3
k+1

(
3
4

)2k+3

1± k+2
k

(
3
4

)2k+1
.

3. Let x ∈ [0, 1] \ { 1
6 ,

1
2 ,

5
6}. For k � 0, specifically, when 1

2 ·
2k+3
2k−1 ·

(
3
4

)2k
< | cos(3πx)|,

the quotient Ẽ2k+1(x)−cos(πx)

Ẽ2k−1(x)−cos(πx)
lies between the two bounds

1

9
·

1∓ | sec(3πx)| · 1
2 ·

2k+5
2k+1

(
3
4

)2k+2

1± | sec(3πx)| · 1
2 ·

2k+3
2k−1

(
3
4

)2k .

If x = 1
6 or 5

6 , then for k ≥ 2, the quotient lies between the two bounds

1

25
·

1∓ 1√
3
· 2k+7

2k+1

(
5
6

)2k+2

1± 1√
3
· 2k+5

2k−1

(
5
6

)2k .

4. Let x ∈ (0, 1) \ { 1
3 ,

2
3}. For k � 0, specifically, when 1

2 ·
k+2
k ·

(
3
4

)2k+1
< | sin(3πx)|,

the quotient Ẽ2k+2(x)−sin(πx)

Ẽ2k(x)−sin(πx)
lies between the two bounds

1

9
·

1∓ | csc(3πx)| · 1
2 ·

k+3
k+1

(
3
4

)2k+3

1± | csc(3πx)| · 1
2 ·

k+2
k

(
3
4

)2k+1
.
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If x = 1
3 or 2

3 , then for k ≥ 2, the quotient lies between the two bounds

1

25
·

1∓ 1√
3
· k+4
k+1

(
5
6

)2k+3

1± 1√
3
· k+2

k

(
5
6

)2k+1
.

(Note that the remaining excluded values of x correspond to the cases when the polynomial
and all terms in its Fourier series are null.)

Proof. Since the techniques are the same in all cases, we will only outline the proof of
the first statement, for the even Bernoulli polynomials.

Let ∆k(x) = B̃2k(x) − cos(2πx). As with the first asymptotic results, the leading
term in the Fourier series dominates the remaining ones. Thus we separate

∆k(x) = B̃2k(x)− cos(2πx) =
cos(4πx)

22k
+

∞∑
n=3

cos(2πnx)

n2k
,

where the leading term is `k(x) = cos(4πx)
22k . By (4.7), the tail is bounded uniformly in x

by εk = 2k+2
2k−1 ·

1
32k .

Thus we have the approximation |∆k(x) − `k(x)| < εk. The condition x ∈ [0, 1] \
{ 1

8 ,
3
8 ,

5
8 ,

7
8} means simply that cos(4πx) 6= 0, or equivalently, `k(x) 6= 0, and we then

verify that, for such a fixed x, the “error term” εk is always eventually smaller than

`k(x) in absolute value. In this particular case, εk < |`k(x)| translates to 2k+2
2k−1 ·

(
2
3

)2k
<

| cos(4πx)|, which clearly holds when k � 0.
This implies that for k � 0, ∆k(x) and `k(x) have the same sign, which is the sign

of cos(4πx). In particular, the succesive quotients ∆k+1(x)
∆k(x) are positive. Then, by the

triangle inequality, 0 < |`k(x)| − εk < |∆k(x)| < |`k(x)|+ εk and hence, for k � 0,

|`k+1(x)| − εk+1

|`k(x)|+ εk
<

∣∣∣∣∆k+1(x)

∆k(x)

∣∣∣∣ =
∆k+1(x)

∆k(x)
<
|`k+1(x)|+ εk+1

|`k(x)| − εk
,

which, after some algebraic manipulation, yields the bounds given in the statement of
the results above.

In the exceptional cases, x = 1
8 ,

3
8 ,

5
8 or 7

8 , since `k(x) = 0, we take the next term

in the series as leading term, namely `k(x) = cos(6πx)
32k . This works because in fact

| cos(6πx)| = 1/
√

2 for all these x. Changing εk to the estimate (4.7) for the new tail
and proceeding as before, gives the set of “exceptional” bounds also stated above.

The other cases are dealt with in the same manner, identifying the corresponding
∆k, `k, εk, noting that for the Euler polynomials we use the bound (4.8) instead of (4.7).

Acknowledgement. We wish to thank the referee who suggested the general ideas in our
proofs of Proposition 4.1, Proposition 4.2 and Theorem 4.3, that allow one to obtain
explicit constants for bounding the rate of convergence.
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