A SOMAgent for Identification of Semantic Classes and Word Disambiguation

  1. Moreno, María 1
  2. Alonso, Luis 1
  3. López, Vivian F. 1
  1. 1 Departamento Informática y AutomáticaUniversidad de SalamancaSalamancaSpain
Advances in Intelligent and Soft Computing

ISSN: 1867-5662 1867-5670

ISBN: 9783642004865

Year of publication: 2009

Pages: 207-216

Type: Book chapter

DOI: 10.1007/978-3-642-00487-2_22 GOOGLE SCHOLAR


Cited by

  • Scopus Cited by: 2 (24-11-2023)
  • Dimensions Cited by: 1 (08-03-2023)


(Data updated as of 08-03-2023)
  • Total citations: 1
  • Recent citations: 0
  • Field Citation Ratio (FCR): 0.34

Bibliographic References

  • Balsa, J., Lopes, G.: A distributed approach for a robust and evolving NLP system. In: Christodoulakis, D.N. (ed.) NLP 2000. LNCS, vol. 1835, pp. 151–161. Springer, Heidelberg (2000)
  • Christiansen, M., Kirby, S.: Language Evolution. Oxford University Press, Oxford (2003)
  • Elman, J., Bates, A., Johnson, A., KarmiloffSmith, A., Parisi, D., Plunkett, K.: Rethinking innateness: A connectionist perspective on development. MIT Press, Cambridge (1996)
  • Fodor, J.A., Pylyshyn, Z.W.: Connectionism and cognitive architecture: A critical analysis. In: Connections and symbols. MIT Press, Cambridge (1998)
  • Gallant, S.I.: A practical approach for representing context and for performing word sense disambiguation using neural networks. ACM SIGIR Forum 3(3), 293–309 (1991)
  • Gärdenfors, P.: Conceptual Spaces. MIT Press, Cambridge (1999)
  • Hirst, G.: Semantic interpretation and the resolution of ambiguity. Cambridge University Press, Cambridge (1987)
  • Honkela, T.: Self-Organizing maps in natural language processing. Thesis for the degree of Doctor of Philosophy, Helsinki University of Technology, Department of Computer Science and Engineering. Public defense at 12th of December (1997)
  • Honkela, T., Winter, J.: Simulating language learning in community of agents using self-organizing maps. Technical report, Helsinky University of Technology, Computer and Information Science Report A71 (2003) ISBN 951-22-6881-7
  • Honkela, T.: Philosophical aspects of neural, probabilistic and fuzzy modeling of language use and translation. In: International joint conference on neural networks, IJCNN 2007, pp. 2881–2886 (2007)
  • Kaski, S.: Dimensionality reduction by random mapping: Fast similarity computation for clustering. In: Proceedings of IJCNN98, International Joint Conference on Neural Networks, vol. 1, pp. 413–418. IEEE Service Center, Piscataway (1998)
  • Klein, E., et al.: Generalized phrase structure grammar (1985)
  • Charniak, E.: Statistical language learning. MIT Press, Cambridge (1993)
  • Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: NAACL 2003: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 48–54. Association for Computational Linguistics, Morristown (2003)
  • Kohonen, T.: Self-organized formation of topologically correct feature maps. Neurocomputing, 511–522 (1990)
  • Kohonen, T.: Self-organized maps. Proceedings of the IEEE 78(9), 1464–1480 (1990b)
  • Kohonen, T.: SOM-PAK: The self-Organizing map program package. Helsinki University of Technology Laboratory of Computer and Information Science, Finland (1995)
  • Koskenniemi, K.: Two-level morphology: A general computational model for word-form recognition and production. PhD thesis, University of Helsinki, Department of General Linguistics (1983)
  • Li, P.: Language acquisition in a self-organizing neural network model. In: Quinlan, P. (ed.) Connectionist models of development: Developmental processes in real and artificial neural networks, pp. 115–149. Psychology Press, New York (2003)
  • Li, P.: Farkas Early lexical development in a self-organizing neural network. Neural Networks 17, 1345–1362 (2004)
  • López, V.: Semantic disambiguation based on conexionist methods for a German Spanish problem of automatic translation. Thesis for the degree of Doctor in computer science. Valladolid University, Spain (1996)
  • MacWhinney, B.: Lexicalist connectionism. In: Broeder, P., Murre, J.M. (eds.) Models of language acquisition: Inductive and deductive approaches, pp. 342–932. Oxford University Press, Oxford (2001)
  • Mayberry III, M.R., Miikkulainen, R.: Lexical disambiguation based on distributed representations of context frequency. In: Proceedings of the 16th Annual Conference of the Cognitive Science Society (1994)
  • Morris, G., Hirst: Semantic interpretation and ambiguity. Artificial Intelligence 34, 131–177 (1998)
  • Pollack, J.B.: Recursive distributed representations. Artificial Intelligence 46, 77–105 (1990)
  • Pulkki, V.: Data averaging inside categories with the selforganizing map. Report A27, Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland (1995)
  • Quinlan, P.: Modeling human development: In brief. In: Quinlan, P. (ed.) Connectionist models of development: Developmental processes in real and artificial neural networks, p. 112. Psychology Press, New York (2003)
  • Ritter, H., Kohonen, T.: Self-organizing semantic maps. Biological Cybernetics 61(4), 241–254 (1989)
  • Ritter, H., Kohonen, T.: Learning “semantotopic maps” from context. In: Proceedings of IJCNN-90-WASH-DC, International Joint Conference on Neural Networks, vol. I, pp. 23–26. Lawrence Erlbaum, Hillsdale (1990)
  • Rumelhart, D., McClelland, J.: On learning the past tenses of English verbs. In: Parallel Distributed Processing. Psychological and Biological Models, vol. 2, pp. 216–271. MIT Press, Cambridge (1986)
  • Scholtes, J.C.: Resolving linguistic ambiguities with a neural data-oriented parsing (DOP) system. In: Aleksander, I., Taylor, J. (eds.) Artificial Neural Networks, vol. 2, II, pp. 1347–1350. North-Holland, Amsterdam (1992)
  • Schütze, H.: Dimensions of meaning. In: Proceedings of Supercomputing, pp. 787–796 (1992)
  • Silva, J.L., Lima, V.: An alternative approach to lexical categorical disambiguation using a multi-agent system architecture. In: Proceedings of the RANLP 1997, Bulgaria, pp. 6–12 (1997)
  • Stefanini, M.H., Berrendonner, A., Lallich, G., Oquendo, F.: Talisman: Un système multi-agents gouverné par des lois linguistiques pour le traitement de la langue naturelle. In: COLING 1992, pp. 490–497 (1992)
  • Strube, V.L., Carneiro, P.R., Filho, I.: Distributing linguistic knowledge in a multi-agent natural language processing system: re-modelling the dictionary. In: Procesamiento del lenguaje natural (23), pp. 104–109 (1998) ISSN 1135-5948
  • Sutcliffe, R., Slater, B.: Word sense disambiguation of text by association methods: a comparative study. In: Proceedings of the SEPLN 1994 (1994)
  • Tikkala, A., et al.: The Production of finnish nouns: a psycholinguistically motivated connectionist model. Connect. Sci. 9(3), 295–314 (1997)
  • Veronis, J., et al.: Word sense disambiguation with very large neural networks extracted from machine readable. Dictionaries. In: COLING 1990, Helsinki (1990)
  • Wermter, S., Riloff, E., Scheler, G.: Connectionist, statistical and symbolic approaches to learning for natural language. Processing. Springer, New York (1996)
  • Wooldridge, M.: Intelligent Agents. In: Weiss, G. (ed.) Multiagent Systems. MIT Press, Cambridge (1999)
  • Zhang, R., Yamamoto, H., Paul, M., Okuma, H., Yasuda, K., Lepage, Y., Denoual, E., Mochihashi, D., Finch, A., Sumita, E.: The NiCTATR statistical machine translation system for IWSLT 2006. In: Proceedings of the International Workshop on Spoken Language Translation, Kyoto, Japan, pp. 83–90 (2006)