Integrability, rational solitons and symmetries for nonlinear systems in Biology and Materials Physics

  1. Albares Vicente, Paz
Supervised by:
  1. Pilar García Estévez Director

Defence university: Universidad de Salamanca

Fecha de defensa: 22 October 2021

Committee:
  1. Juan Domingo Lejarreta González Chair
  2. Piergiulio Tempesta Secretary
  3. Sengül Kuru Committee member
Department:
  1. FÍSICA FUNDAMENTAL

Type: Thesis

Abstract

ESPAÑOL: Los sistemas no lineales constituyen un tema de investigación de creciente interés en las últimas décadas dada su versatilidad en la descripción de fenómenos físicos en diversos campos de estudio. Generalmente, dichos fenómenos vienen modelizados por ecuaciones diferenciales no lineales, cuya estructura matemática ha demostrado ser sumamente rica, aunque de gran complejidad respecto a su análisis. Dentro del conjunto de los sistemas no lineales, cabe destacar un reducido grupo, pero a la vez selecto, que se distingue por las propiedades extraordinarias que presenta: los denominados sistemas integrables. La presente tesis doctoral se centra en el estudio de algunas de las propiedades más relevantes observadas para los sistemas integrables. En esta tesis se pretende proporcionar un marco teórico unificado que permita abordar ecuaciones diferenciales no lineales que potencialmente puedan ser consideradas como integrables. En particular, el análisis de integralidad de dichas ecuaciones se realiza a través de técnicas basadas en la Propiedad de Painlevé, en combinación con la subsiguiente búsqueda de los problemas espectrales asociados y la identificación de soluciones analíticas de naturaleza solitónica. El método de la variedad singular junto con las transformaciones de auto-Bäcklund y de Darboux jugarán un papel fundamental en este estudio. Además, también se lleva a cabo un análisis complementario basado en las simetrías de Lie y reducciones de similaridad, que nos permitirán estudiar desde esta nueva perspectiva los problemas espectrales asociados. Partiendo de la archiconocida ecuación de Schrödinger no lineal, se han investigado diferentes generalizaciones integrables de dicha ecuación con numerosas aplicaciones en diversos campos científicos, como la Física Matemática, Física de Materiales o Biología. INGLÉS: Nonlinear systems emerge as an active research topic of growing interest during the last decades due to their versatility when it comes to describing physical phenomena. Such scenarios are typically modelled by nonlinear differential equations, whose mathematical structure has proved to be incredibly rich, but highly nontrivial to treat. In particular, a narrow but surprisingly special group of this kind stands out: the so-called integrable systems. The present doctoral thesis focuses on the study of some of the extraordinary properties observed for integrable systems. The ultimate purpose of this dissertation lies in providing a unified theoretical framework that allows us to approach nonlinear differential equations that may potentially be considered as integrable. In particular, their integrability characterization is addressed by means of Painlevé analysis, in conjunction with the subsequent quest of the associated spectral problems and the identification of analytical solutions of solitonic nature. The singular manifold method together with auto-Bäckund and Darboux transformations play a critical role in this setting. In addition, a complementary methodology based on Lie symmetries and similarity reductions is proposed so as to analyze integrable systems by studying the symmetry properties of their associated spectral problems. Taking the ubiquitous nonlinear Schrödinger equation as the starting point, we have investigated several integrable generalizations of this equation that possess copious applications in distinct scientific fields, such as Mathematical Physics, Material Sciences and Biology.