COMPRESSer - development of eco-friendlier and safer composite pressure tanks

  1. Roberto García-Martín 1
  2. Jorge López-Rebollo 1
  3. Luis Javier Sánchez-Aparicio 2
  4. José G. Fueyo 1
  5. Javier Pisonero 1
  6. Diego Gonzalez-Aguilera 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

Actas:
Proceedings IRF2020: 7th International Conference Integrity-Reliability-Failure
  1. J.F. Silva Gomes (coord.)
  2. S.A. Meguid (coord.)

ISBN: 978-989-54756-1-2

Año de publicación: 2020

Páginas: 15-24

Congreso: 7th International Conference Integrity-Reliability-Failure

Tipo: Aportación congreso

Resumen

The COMPRESSer project has the main aim of defining a knowledge cluster in the SUDOE region, involving a total of 3 countries: Spain, Portugal, and France. This cluster, made up by universities and other companies, will develop innovative, composite overwrapped pressure vessels by means of cutting edge experimental and numerical methods and advanced processes, supporting the future industry and commercialization of these new range of products. COMPRESSer aims to improve them with the incorporation and integration of several other advanced features such as fracture toughness, electrical conductivity or even self-structural health monitoring. On this basis, we plan to cover the entire value-chain, from design and simulation to manufacturing and experimental validation testing. These products will gradually replace traditional solutions, mostly based on metallic materials, in several application domains such as fire extinguishers or gas containers (industrial gases, oxygen) among others. This project positions as a kick-starter for future industrialization of these type of products in the SUDOE region.

Referencias bibliográficas

  • [1] Bajpai A, Martin R, Faria H, Ibarboure E, Carlotti S (2020), 'Epoxy based hybrid nanocomposites: Fracture mechanisms, tensile properties and electrical properties', Materials Today: Proceedings.
  • [2] Bajpai Ankur, Carlotti Stéphane (2019), 'The Effect of Hybridized Carbon Nanotubes, Silica Nanoparticles, and Core-Shell Rubber on Tensile, Fracture Mechanics and Electrical Properties of Epoxy Nanocomposites', Nanomaterials, 9: 1057.
  • [3] COMPRESSer. 2018a. 'State of the art and market survey', Unpublished document, COMPRESSer (Report of the Project Activity 1.1).
  • [4] 2018b. 'Definition of the methodology for numerical analysis and optimization of costs for the composite-based prototype of extinction systems', Unpublished document, COMPRESSer (Report of the Project Activity 1.2).
  • [5] 2019a. 'General methodology for the analysis and experimental validation of composite containers', Unpublished document, COMPRESSer (Report of the Project Activity 1.3).
  • [6] 2019b. 'Technical analysis of fibers and resins for the manufacture of composite containers', Unpublished document, COMPRESSer(Report of the Project Activity 2.1).
  • [7] Delogu M, Zanchi L, Dattilo CA, Pierini M (2017), 'Innovative composites and hybrid materials for electric vehicles lightweight design in a sustainability perspective', Materials Today Communications, 13: 192-209 2352-4928.
  • [8] Faria Hugo, Miranda Guedes Rui (2010), 'Long-term behaviour of GFRP pipes: reducing the prediction test duration', Polymer Testing, 29: 337-45 0142-9418.
  • [9] Garcia-Martin Roberto, Bautista-De Castro Álvaro, Sánchez-Aparicio Luis Javier, Fueyo José G, Gonzalez-Aguilera Diego (2019), 'Combining digital image correlation and probabilistic approaches for the reliability analysis of composite pressure vessels', Archives of Civil and Mechanical Engineering, 19: pp.224-239.
  • [10] Garcia-Martin, Roberto, López-Rebollo Jorge, Sánchez-Aparicio Luis Javier, Fueyo José G, Pisonero Javier, Gonzalez-Aguilera Diego (2020), 'Digital image correlation and reliability- based methods for the design and repair of pressure pipes through composite solutions', Construction and Building Materials, 248: 118625.
  • [11] Guedes RM, Sá Alcides, Faria Hugo (2007), 'Influence of moisture absorption on creep of GRP composite pipes', Polymer Testing, 26: 595-605 0142-9418.
  • [12] Novak Lukas, Novak Drahomir (2018), 'Polynomial chaos expansion for surrogate modelling: Theory and software', Beton‐und Stahlbetonbau, 113: 27-32 0005-9900.
  • [13] Orell Olli, Vuorinen Jyrki, Jokinen Jarno, Kettunen Heikki, Hytönen Pertti, Turunen Jani, Kanerva Mikko (2018), 'Characterization of elastic constants of anisotropic composites in compression using digital image correlation', Composite Structures, 185: 176-85 0263-8223.
  • [14] Rafiee Roham (2016), 'On the mechanical performance of glass-fibre-reinforced thermosetting-resin pipes: A review', Composite Structures, 143: 151-64 0263-8223.
  • [15] Reddy Junuthula Narasimha (2003), Mechanics of laminated composite plates and shells: theory and analysis (CRC press).
  • [16] Rosato Dominick V, Cornelius Sherman Grove (1964), Filament winding: its development, manufacture, applications, and design (Interscience Publishers).
  • [17] Sánchez-Aparicio Luis Javier, Ramos Luís F, Sena-Cruz José, Barros Joaquim O, Riveiro Belén (2015), 'Experimental and numerical approaches for structural assessment in new footbridge designs (SFRSCC–GFPR hybrid structure)', Composite structures, 134: 95-105 0263-8223.
  • [18] Sánchez-Aparicio Luis Javier, Villarino Alberto, García-Gago Jesús, González-Aguilera Diego (2016), 'Photogrammetric, geometrical, and numerical strategies to evaluate initial and current conditions in historical constructions: A test case in the church of san lorenzo (zamora, spain)', Remote Sensing, 8: 60.
  • [19] Sharifi Shokrollah, Gohari Soheil, Sharifiteshnizi Masoumeh, Alebrahim Reza, Burvill Colin, Yahya Yazid, Vrcelj Zora (2018), 'Fracture of laminated woven GFRP composite pressure vessels under combined low-velocity impact and internal pressure', Archives of Civil and Mechanical Engineering, 18: 1715-28 644-9665.
  • [20] Sutton Michael A, Orteu Jean Jose, Schreier Hubert X (2009), Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications (Springer Science & Business Media).
  • [21] Tekieli Marcin, De Santis Stefano, De Felice Gianmarco, Kwiecień Arkadiusz, Roscini Francesca (2017), 'Application of Digital Image Correlation to composite reinforcements testing', Composite Structures, 160: 670-88 0263-8223.
  • [22] Tomar Sanjay Singh, Zafar Sunny, Talha Mohammad, Gao Wei, Hui David (2018), 'State of the art of composite structures in non-deterministic framework: a review', Thin-Walled Structures, 132: 700-16 0263-8231.