Preliminary evaluation of different underground hydrogen storage systems in Spain

  1. Cristina Sáez Blázquez 1
  2. Ignacio Martín Nieto 1
  3. Miguel Ángel Maté-González 12
  4. Arturo Farfán Martín 1
  5. Diego González-Aguilera 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 Department of Topographic and Cartography Engineering, Higher Technical School of Engineers in Topography, Geodesy and Cartography, Technical University of Madrid
Actas:
Proceedings of the III Ibero-American Conference on Smart Cities

ISBN: 978-9930-541-79-1

Año de publicación: 2020

Páginas: 701-715

Congreso: III Ibero-American Conference on Smart Cities (ICSC-2020)

Tipo: Aportación congreso

Resumen

In the future energy system with a high share of renewable sources, the role of hydrogen will be essential to deal with the fluctuations in the electricity production. Hydrogen is understood as a system capable of storing energy for a later use in a controlled way. In this way, surplus electricity coming from renewable energies is used for generating hydrogen by the electrolysis process. Once produced, hydrogen is stored in one of the different underground storage structures to be used when needed. In this context, the aim of this research is to provide a preliminary evaluation about the potential for underground hydrogen storage in the country of Spain, considering the usual geological formations of these systems (deep aquifers, salt caverns and depleted hydrocarbon fields). The analysis of each alternative has allowed highlighting that Spain presents potential locations where future hydrogen storage could be feasible. Regarding salt caverns, this country has high onshore storage capacities, with a total of located 24 caverns. Furthermore, the Spanish potential of hydrogen storage in aquifers is also relevant especially in Tertiary sedimentary basins as the Ebro, Duero and Guadalquivir basins. The storage potential in depleted oil and gas fields is however reduced due to the limited hydrocarbon activity of the country.

Referencias bibliográficas

  • 1. European Commission. "Energy 2020. A strategy for competitive, sustainable and secure energy." (2011).
  • 2. UNITED NATIONS PUBLICATIONS. UNITED NATIONS TREATY SERIES. UN, (2016).
  • 3. Tarkowski R.: Underground hydrogen storage: characteristics and prospects. Renew Sustain Energy Rev 105, 86-94 (2019).
  • 4. Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D.: Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrogen Energy 40, 4285-94 (2015).
  • 5. Taylor, J. B., Alderson, J. E. A., Kalyanam, K. M., Lyle, A. B., & Phillips, L. A.: Technical and economic assessment of methods for the storage of large quantities of hydrogen. International Journal of Hydrogen Energy 11(1), 5-22 (1986).
  • 6. Carr, S., Premier, G. C., Guwy, A. J., Dinsdale, R. M., & Maddy, J.: Hydrogen storage and demand to increase wind power onto electricity distribution networks. International journal of hydrogen energy, 39(19), 10195-10207 (2014).
  • 7. Crotogino F, Wasserstoff-Speicherung Hamelmann R. In: Salzkavernen zur Glättung des Windstromangebots.: KBB Underground Technologies GmbH; (2007).
  • 8. Reitenbach V, Ganzer L, Albrecht D, Hagemann B.: Influence of added hydrogen on underground gas storage: a review of key issues. Environ Earth Sci 73(11), 6927-37 (2015).
  • 9. Szummer A, Jezierska E, Lublinska K.: Hydrogen surface effects in ferritic stainless steels. J Alloy Comp, 293-295:356-60 (1999).
  • 10. Kanezaki T, Narazaki C, Mine Y, Matsouoka S, Murakami Y.: Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int J Hydrogen Energy, 33(10), 2604-19 (2008).
  • 11. Henkel S, Pudlo D, Werner L, Enzmann F, Reitenbach V, Albrecht D.: Mineral reactions in the geological underground induced by H2 and CO2 injections. Energ Proc 63, 8026-35 (2014).
  • 12. Lord, A. S.: Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen. SAND2009-5878, Sandia National Laboratory, Albuquerque, NM. (2009).
  • 13. Ozarslan, A.: Large-scale hydrogen energy storage in salt caverns. International Journal of Hydrogen Energy, 37(19), 14265-14277 (2012).
  • 14. Felseghi, R. A., Carcadea, E., Raboaca, M. S., Trufin, C. N., & Filote, C.: Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications. Energies, 12(23), 4593 (2019).
  • 15. HyUnder. Overview on all known underground storage technologies for hydrogen. https://www.fch.europa.eu/sites/default/file/project_results_and_deliverables. (2018).
  • 16. Gąska K, Hoszowski A, Gmiński Z, Kurek A. Monografia podziemnych magazynów gazuw Polsce. Stowarzyszenie Inżynierów i Techników Przemysłu Naftowego i Gazowniczego Oddział Warszawa II, Warszawa; (2012).
  • 17. Capros, P., De Vita, A., Tasios, N., Siskos, P., Kannavou, M., Petropoulos, A., ... & Paroussos, L.: EU Reference Scenario 2016-Energy, transport and GHG emissions Trends to 2050, (2016).
  • 18. Zeeshan Shirazi, S., & Mohammad Zeeshan Shirazi, S.: Review of Spanish renewable energy policy to encourage investment in solar photovoltaic. Journal of renewable and sustainable energy, 4(6), 062702 (2012).
  • 19. Spanish Ministry of Agriculture, Fishing, Food and Environment. Spanish transitional national plan (TNP)-Directive 2010/75/EU-large combustion plants. Madrid: MAPAMA; (2016).
  • 20. European Union. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Off J Eur Union, L334:17-119 (2010).
  • 21. Del Rio, P., & Mir-Artigues, P.: A cautionary tale: Spain’s solar PV investment bubble. International Institute for Sustainable Development (2014).
  • 22. Real Decreto 1578/2008, de 26 de septiembre, de retribución de la actividad de producción de energía eléctrica mediante tecnología solar fotovoltaica para instalaciones posteriores a la fecha límite de mantenimiento de la retribución del Real Decreto 661/2007, de 25 de mayo, para dicha tecnología. Agencia Estatal Boletín Oficial del Estado (BOE), (2008).
  • 23. IEA, International Energy Agency. World Energy Balances, Database documentation (2020).
  • 24. Gibbons, W., & Moreno, T. (Eds.).: The geology of Spain. Geological Society of London (2002).
  • 25. IGN, Institute Geográfico Nacional. Seismic hazards map, general seismic map of the Iberian Peninsula (2015).
  • 26. Tarkowski R, Czapowski G.: Salt domes in Poland – potential sites for hydrogen storage in caverns. Int J Hydrogen Energy, 43, 21414-27 (2018)
  • 27. Michalski J, Bünger U, Crotogino F, Donadei S, Schneider G-S, Pregger T, et al.: Hydro- gen generation by electrolysis and storage in salt caverns: potentials, economics and sys- tems aspects with regard to the German energy transition. Int J Hydrogen Energy, 42, 13427-43 (2017).
  • 28. Assessment of the potential the A and RBC for LS and LTS of RE by HUS in E, editor. HyUnder Project, 18 (2014).
  • 29. Simon, J., Ferriz, A. M., & Correas, L. C.: HyUnder-hydrogen underground storage at large scale: case study Spain. Energy procedia, 73, 136-144 (2015).
  • 30. Gutiérrez, F., Calaforra, J. M., Cardona, F., Ortí, F., Durán, J. J., & Garay, P.: Geological and environmental implications of the evaporite karst in Spain. Environmental Geology, 53(5), 951-965 (2008).
  • 31. Caglayan, D. G., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A., & Stolten, D.: Technical potential of salt caverns for hydrogen storage in Europe. Interna- tional Journal of Hydrogen Energy, 45(11), 6793-6805 (2020).
  • 32. Panfilov, M., Gravier, G., & Fillacier, S.: Underground storage of H2 and H2-CO2-CH4 mixtures. In ECMOR X-10th European conference on the mathematics of oil recovery (pp. cp-23). European Association of Geoscientists & Engineers (2006).
  • 33. Dalhoff,F., Vangkilde-Pedrsen,T.: Storage capacity calculations in saline aquifers. CO2 Net Annual Seminar, November 6-7 (2007).
  • 34. Martínez, R., Suárez, I., Zapatero, M. A., Saftic, B., Kolenkovic, I., Car, M., ... & Donda, F.: The EU GeoCapacity project—saline aquifers storage capacity in group south coun- tries. Energy Procedia, 1(1), 2733-2740 (2009).
  • 35. Loredo, J., Cienfuegos, P., & Pendás, F.: OPPORTUNITIES FOR CO2 GEOLOGICAL STORAGE IN CENTRAL COAL BASIN (NORTHERN SPAIN). CO2SC (2006).
  • 36. Sáinz-García, A., Abarca, E., Rubí, V., & Grandia, F.: Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. International Journal of Hydrogen Energy, 42(26), 16657-16666 (2017).
  • 37. Ogaya, X., Queralt, P., Ledo, J., Marcuello, Á., & Jones, A. G.: Geoelectrical baseline model of the subsurface of the Hontomín site (Spain) for CO2 geological storage in a deep saline aquifer: A 3D magnetotelluric characterisation. International Journal of Greenhouse Gas Control, 27, 120-138 (2014).
  • 38. CORES, Corporación de Derecho Público tutelada por el Ministerio para la Transición Ecológica y el Reto Demográfico (2020).