Technical comparison of specific software used in the design of ground source heat pump systems

  1. Cristina Sáez Blázquez 1
  2. Ignacio Martín Nieto 1
  3. Arturo Farfán Martín 1
  4. Diego González-Aguilera 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Actas:
Ibero-American Conference on Smart Cities

ISBN: 978-958-5583-78-8

Año de publicación: 2019

Páginas: 597-611

Congreso: Ibero-American Conference on Smart Cities (ICSC-CITIES 2019)

Tipo: Aportación congreso

Resumen

An accurate design of a ground source heat pump system is crucial to ensure the future operation of the geothermal installation. PC-programs usually constitute the most optimal and quick solution for the dimensioning of the men- tioned systems. In this regard, Earth Energy Designer (EED) software is fre- quently used by specialized users for the design of closed vertical geothermal loops. Based on the weaknesses detected on this program and the enhanced knowledge of the geothermal operation from different research studies, a new geothermal tool, GES-CAL, has been developed. In this way, the principal ob- jective of this study is to evaluate this new software and to compare the results of both PC-programs. This comparison derives from the application of both tools in the calculation of the same study case. Results obtained in this research show that GES-CAL software is an accurate and valid alternative for the design of all heat exchanger configurations, especially for those installations placed in the region of Ávila. EED, is however, recommended for the calculation of high power geothermal systems that require an exhaustive analysis of the ground and heat carrier fluid behavior.

Referencias bibliográficas

  • 1. Rybach, L., Mongillo, M. Geothermal sustainability – a review with identified research needs. Geothermal Resource Council Transactions 30, 1083–1090, (2006).
  • 2. Saner, D., Juraske, R., Kübert, M., Blum, P., Hellweg, S., Bayer, P. Is it only CO2 that mat- ters? A life cycle perspective on shallow geothermal systems. Renewable and Sustainable Energy Reviews 14, 1798–1813, (2010).
  • 3. Nagano, K., Katsura, T., Takeda, S., Development of a design and performance prediction tool for the ground source heat pump system. Applied Thermal Engineering 26, 1578–1592, (2006).
  • 4. Li, X., Chen, Z., Zhao, J., Simulation and experiment on the thermal performance of U- vertical ground coupled heat exchanger. Applied Thermal Engineering 26, 1564–1571, (2006).
  • 5. Gao, Q., Li, M., Yu, M., Experiment and simulation of temperature characteristics of inter- mittently-controlled ground heat exchanges. Renewable Energy 35, 1169–1174, (2010).
  • 6. Cristina Sáez Blázquez, Arturo Farfán Martín, Pedro Carrasco García, Luis Santiago Sán- chez Pérez, Sara Jiménez del Caso. “Analysis of the process of design of a geothermal in- stallation”, Renewable Energy 89, 1-12 (2016).
  • 7. Cristina Sáez Blázquez, Arturo Farfán Martín, Ignacio Martín Nieto, Pedro Carrasco García, Luis Santiago Sánchez Pérez, Diego González Aguilera. “Thermal conductivity map of the Avila region (Spain) based on thermal conductivity measurements of different rock and soil samples”, Geothermics 65, 60–71 (2017).
  • 8. Cristina Sáez Blázquez, Arturo Farfán Martín, Ignacio Martín Nieto, Pedro Carrasco García, Luis Santiago Sánchez Pérez and Diego González-Aguilera. “Efficiency Analysis of the Main Components of a Vertical Closed-Loop System in a Borehole Heat Exchanger”, Ener- gies 10, 201-216; Special Issue "Low Enthalpy Geothermal Energy" (2017).
  • 9. Cristina Sáez Blázquez, Arturo Farfán Martín, Ignacio Martín Nieto and Diego González- Aguilera. “Measuring of Thermal Conductivities of Soils and Rocks to Be Used in the Cal- culation of A Geothermal Installation”, Energies 10, 795-813 (2017).
  • 10. Cristina Sáez Blázquez*, Arturo Farfán Martín, Ignacio Martín Nieto, Pedro Carrasco Gar- cía, Luis Santiago Sánchez Pérez, Diego González-Aguilera. Analysis and study of different grouting materials in vertical geothermal closed-loop systems, Renewable Energy 114, 1189-1200, (2017).
  • 11. Cristina Saez Blazquez, David Borge-Diez, Ignacio Martin Nieto, Arturo Farfan Martin, Di- ego Gonzalez-Aguilera, Technical optimization of the energy supply in geothermal heat pumps. Geothermics 81, 133–142 (2019).
  • 12. Cristina Sáez Blázquez, Ignacio Martín Nieto, Arturo Farfán Martín, Diego González- Aguilera and Pedro Carrasco García, Comparative Analysis of Different Methodologies Used to Estimate the Ground Thermal Conductivity in Low Enthalpy Geothermal Systems. Energies 12 (9), 1672 (2019).
  • 13. IDAE, Institute for the diversification and energy saving, Diseño de sistemas de intercambio geotérmico en circuito cerrado. Guía técnica, Ahorro y Eficiencia Energética en Climatiza- ción, (2010).
  • 14. UNE-EN 100715-1. Diseño, ejecución y seguimiento de una instalación geotérmica somera, sistemas de circuito cerrado vertical. (2014).
  • 15. UNE-EN ISO 13790:2011. Eficiencia energética de los edificios. Cálculo del consumo de energía para calefacción y refrigeración de espacios. (ISO 13790:2008).