Cronofuncionesmodelización estadística de conjuntos de dataciones numéricas para el estudio del Cuaternario. Ejemplos para la Península Ibérica

  1. Pablo G. Silva Barroso
  2. Elvira Roquero
Revista:
Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario

ISSN: 0214-1744

Año de publicación: 2022

Volumen: 36

Número: 3-4

Páginas: 123-142

Tipo: Artículo

DOI: 10.17735/CYG.V36I3-4.93733 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario

Resumen

El presente trabajo analiza el uso de funciones matemáticas geocronológicas para el establecimiento de marcos cronológicos teóricos en el análisis de diferentes procesos acaecidos durante el periodo Cuaternario. El progresivo aumento de dataciones absolutas obtenidas mediante diferentes métodos (C14, TL, OSL, ESR, TH/U, Cosmogénicos, etc.) de yacimientos arqueológicos, sedimentos y formas del relieve (p.ej.: terrazas fluviales) hace posible el desarrollo de funciones geocronológicas cada vez más precisas. Entre las más utilizadas se encuentran las funciones de distribución de probabilidades de fechas C14 (SPD y SPDR), funciones de frecuencias acumuladas y funciones de regresión (lineales, potenciales, logarítmicas y polinómicas). En este trabajo nos centramos en las dos últimas indicando su creciente utilidad para la determinación de periodos de sedimentación, erosión, formación de suelos y su comparación con curvas paleoclimáticas derivadas de análisis isotópicos (p.ej. O18), así como la utilización de regresiones logarítmicas y polinómicas de diferente orden para el establecimiento de marcos cronológicos en la evolución de valles fluviales en función de la altura relativa de sus sistemas de terrazas.

Referencias bibliográficas

  • Citas Alonso, P., Sierra, C., Ortega, E., Dorronsoro, C. (1994). Soil development indices of soils developed on fluvial terraces (Peñaranda de Bracamonte, Salamanca, Spain). Catena, 23, 295–308. https://doi.org/10.1016/0341-8162(94)90074-4
  • Baena, R.; Díaz del Olmo, F. (1994). Cuaternario aluvial de la Depresión del Guadalquivir: episodios geomorfológicos y cronología paleomagnética. Geogaceta 15:109-111. https://hdl.handle.net/11441/52486
  • Balsera, V., Díaz-del-Río, P., Gilman, A., Uriarte, A., Vicent, J. M. (2015). Approaching the demography of late prehistoric Iberia through summed calibrated date probability distributions (7000–2000 cal BC). Quaternary International, 386, 208–211. https://doi.org/10.1016/j.quaint.2015.06.022
  • Blanco-González, A., Lillios, K. T., López-Sáez, J.A., Drake, B. L. (2018). Cultural, Demographic and Environmental Dynamics of the Copper and Early Bronze Age in Iberia (3300-1500 BC): Towards an Interregional Comparison at the Time of the 4.2 ky BP Event. Journal of World Prehistory, 31, 1-79. https://doi.org/10.1007/s10963-018-9113-3
  • Benito-Calvo, A., Pérez-González, A., Santonja, M., 1998. Terrazas rocosas aluviales y travertínicas del valle alto del río Henares (Guadalajara, España). Geogaceta 24, 55-58.
  • Benito-Calvo, A., Moreno, D., Fujioka, T., López, G.I., Martín-González, F., Martínez-Fernández, A., Hernando-Alonso, I., Karampaglidis, T., Bermúdez de Castro, J.M., Gutiérrez, F. (2022). Towards the steady state? A long-term river incision deceleration pattern during pleistocene entrenchment (Upper Ebro River, Northern Spain), Global and Planetary Change, 2022, 103813. https://doi.org/10.1016/j.gloplacha.2022.103813
  • Candy, I., Black, S. (2009). The timing of Quaternary calcrete development in semi-arid southeast Spain: Investigating the role of climate on calcrete genesis. Sedimentary Geol., 218, 6-15. https://doi.org/10.1016/j.sedgeo.2009.03.005
  • Crema, E.R., Bevan, A. Shennan, S. (2017). Spatio-temporal approaches to archaeological radiocarbon dates. Journal of Archaeological Science, 87, 1 – 9. https://doi.org/10.1016/j.jas.2017.09.007
  • Crema, E.R., Bevan, A. (2020) Inference from Large Sets of Radiocarbon Dates: Software and Methods Radiocarbon. https://doi.org/10.1017/RDC.2020.95
  • Cunha, P.P., Martins, A., Huot, S., Murray, A.S., Raposo, L. (2008). Dating the Tejo River lower terraces in the Ródão area (Portugal) to assess the role of tectonics and uplift. Geomorphology, 102, 43–54. https://doi.org/10.1016/j.quascirev.2016.11.001
  • Cunha, P.P., Martins, A.A., Gomes, A., Stokes, M., Cabral, J., Lopes, F.C., Pereira, D., De Vicente, G., Buylaert, J.P., Murray, A.S. (2019). Mechanisms and age estimates of continental-scale endorheic to exorheic drainage transition: Douro River, Western Iberia. Glob. Planet. Change 181, 102985. https://doi.org/10.1016/j.gloplacha.2019.102985
  • Cheng, H., Edwards, R.L., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Alexander, E.C. Jr. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371-372, 82-91. https://doi.org/10.1016/j.epsl.2013.04.006
  • Drake, B. L., Blanco-González, A., Lillios, K. T. (2017). Regional dynamics in the Neolithic transition in Iberia: Results from summed calibrated date analysis. Journal of Archaeological Method and Theory, 24(3), 796–812. https://doi.org/10.1007/s10816-016-9286-y
  • Duval, M., Arnold, L.J., Rixhon, G. (2020). Electron spin resonance (ESR) dating in Quaternary studies: Evolution, recent advances and applications. Quaternary International, 2020, 556, 1–10. https://doi.org/10.1016/j.quaint.2020.07.044
  • Gardner, T.W., Jorgensen, D.W., Shuman, C. and Lemieux, C.R. (1987). Geomorphic and tectonic process rates: effects of measured time interval. Geology, 15: 259-261. https://doi.org/10.1130/0091-7613(1987)15<259:GATPRE>2.0.CO;2
  • Gupta, S., Collier, J. S., Palmer-Felgate, A., Potter, G. (2007). Catastrophic flooding origin of shelf valley systems in the English Channel. Nature. 448 (7151), 342–345. https://doi.org/10.1038/nature06018
  • Harden, J. (1982). A quantitative index of soil development from field description: examples from a chronosequence in Central California. Geoderma, 28, 1-28. https://doi.org/10.1016/0016-7061(82)90037-4
  • Harden, J. W., Taylor, E. M., 1983. A quantitative comparison of soil development in four climatic regimes. Quaternary Research, 20, 342–359. https://doi.org/10.1016/0033-5894(83)90017-0
  • Hillaire-Marcel, C., Garíepy, C., Ghaleop, B., Goy, J.-L., Zazo, C., Barcelo, J.C., 1996. U-series measurements in Tyrrhenian deposits from Mallorca-further evidence for two last interglacial high sea levels in the Balearic Islands. Quaternary Science Reviews.,15, 53–62. https://doi.org/10.1016/0277-3791(95)00079-8
  • Karampaglidis, T., Benito-Calvo, A., Rodés, A., Braucher, R., Pérez-González, A., Parés, J.M., Stuart, F., Di Nicola, L., Bourles, D. (2020). Pliocene endorheic-exhoreic drainage transition of the Cenozoic Madrid Basin (Central Spain). Global and Planetary Change, 194, 103295. https://doi.org/10.1016/j.gloplacha.2020.103295
  • Lajoie, K.R. (1986). Coastal tectonics. En: Wallace, R.E. (Ed.), Active Tectonics. Studies in Geophysics. National Academic Press, Washington, DC, pp. 136–147.
  • Larasoaña, J.C., Ortuño, M., Birks, H.H., Valero-Garcés, B., Parés; J.M., Copons, R., Camarero, L., Bordonau, J. (2010). Palaeoenvironmental and palaeoseismic implications of a 3700-year sedimentary record from proglacial Lake Barrancs (Maladeta Massif, Central Pyrenees, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 294. 83–93. https://doi.org/10.1016/j.palaeo.2009.04.003
  • McFadden, L. D., Weldon, R. J. (1987). Rates and processes of soil development on Quaternary terraces in Cajon Pass, southern California. Geological Society of America Bulletin, 98, 280–293. https://doi.org/10.1130/0016-7606(1987)98<280:RAPOSD>2.0.CO;2
  • Martín-Martín, I., Silva, P.G., Martínez-Graña, A., Elez, J. (2020). Geomorphological and geochronological analysis applied to the Quaternary landscape evolution of the Yeltes River (Salamanca, Spain). Sustainability, 12(19). 7869; https://doi.org/10.3390/su12197869
  • Mediato, J.F. Santisteban, J.I., del Moral, B., Mediavilla, R., Dabrio, C.J. (2020). Aridity events during the last 4000 years in Western Mediterranean marshes (Almenara and Benicasim marshes, E Spain). Quaternary International, 566–567. 303-314. https://doi.org/10.1016/j.quaint.2020.04.021
  • Moreno, A., López-Merino, L., Leira, M., Marco-Barba, J., González Sampériz, P., Valero Garcés, B., López-Sáez, J.A., Santos, L., Mata, P., Ito, E. (2011). Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). Journal of Palaeolimnology, 46, 327–349. https://doi.org/10.1007/s10933-009-9387-7
  • Moreno, A., Svensson, A., Brooks, S.K., Connor, S., Engels, S., Fletcher, W., Genty, D., Heiri, O., Labuhn, I., Persoiu, A., Peyron, O., Sadori, L., Valero-Garcés, B.L., Wulf, S., Zanchetta, G., 2014. A compilation of Western European terrestrial records 60–8 ka BP: towards an understanding of latitudinal climatic gradients. Quaternay Science Reviews, 106, 167–185. https://doi.org/10.1016/j.quascirev.2014.06.030
  • Muhs, D.R., Simmons, K.R., Meco, J., Porat, N. (2015). Uranium-series ages of fossil corals from Mallorca, Spain: The “Neotyrrhenian” high stand of the Mediterranean Sea revisited. Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 408–424. https://doi.org/10.1016/j.palaeo.2015.06.043
  • Parés, J.M., Duval, M., Soria-Jáuregui, A., González-Amuchástegui, M.J. (2021). First Chronological Constraints for the High Terraces of the Upper Ebro Catchment. Quaternary, 4, 25. https://doi.org/10.3390/quat4030025
  • Pinilla, L., Pérez-González, A., Sopeña, A., Parés, A. (1995). Fenómenos de hundimientos sinsedimentarios en los depósitos cuaternarios del río Tajo en la Cuenca de Madrid (Almoguera-Fuentidueña de Tajo). Monografías C. CC. Medioambientales, 3. CSIC, Madrid, 125-140.
  • Ramsey, C.B. (2017). Methods for summarizing Radiocarbon datasets. Radiocarbon, 59 (6), 1809 – 1833. https://doi.org/10.1017/RDC.2017.108
  • Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., et al. (2013). Intcal13 and Marine13 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon, 55(4), 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947
  • Rodríguez-Lloveras, X., Machado, M.J., Sánchez-Moya, Y., Celleb, M., Medialdea, A., Sopeña, A., Benito, G. (2020). Impacts of sediment connectivity on Holocene alluvial records across a Mediterranean basin (Guadalentín River, SE-Spain). Catena, 187, 104321. https://doi.org/10.1016/j.catena.2019.104321
  • Roquero, E., Goy, J.L., Zazo, C. (1997). Nuevos índices cronológicos de evolución de suelos en terrazas fluviales. Estudios Geológicos, 53, 3-15. https://doi.org/10.3989/egeol.97531-2242
  • Roquero, E., Silva, P.G., Zazo, C., Goy, J.L., Massana, J. (2015). Soil evolution indices in fluvial terrace chronosequences of Central Spain (Tagus and Duero fluvial basins). Quaternary International, 376, 101-113. https://doi.org/10.1016/j.quaint.2014.11.036
  • Roquero, E., Silva, P.G., Rodríguez-Pascua, M.A., Bardají, T., Elez, J., Carrasco, P., Giner-Robles, J.L. (2019). Geomorphology and pedology of faulted fan surfaces and paleosols in the Palomares Fault Zone (Betic Cordillera, SE Spain): paleoclimatic and paleoseismic implications. Geomorphology, 342, 196 – 209. https://doi.org/10.1016/j.geomorph.2019.06.003
  • Sauer, D. (2010). Approaches to quantify progressive soil development with time in Mediterranean climate—I. Use of field criteria. J. Plant Nutr. Soil Sci., 173, 822–842. https://doi.org/10.1002/jpln.201000136
  • Schwarcz, H.P. (1989). Uranium series dating of Quaternary deposits. Quaternary International 1, 7-17. https://doi.org/10.1016/1040-6182(89)90005-0
  • Silva, P.G., Roquero, E., López-Recio, M., Huerta, P., Martínez-Graña, A. (2015). Valley incision trends and subsequent chronosequences of fluvial terraces for Atlantic large rivers in the Iberian Peninsula and Northern Europe. Progress in Quaternary archive studies in the Iberian Peninsula, 91-92.
  • Silva, P.G., Roquero, E., López-Recio, M., Huerta, P., Martínez-Graña, A. (2017). Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tagus and Duero basins, Central Spain). Quaternary Science Reviews, 166, 188-203. https://doi.org/10.1016/j.quascirev.2016.05.027
  • Silva, P.G., Roquero, E., Bardají, T., Medialdea, A. (2020). Pleistocene to Holocene phases of sedimentation and soil formation in the semiarid SE Spain (Eastern Betic Cordillera). Cuaternario y Geomorfología, 34 (1-2), 41-61. https://doi.org/10.17735/cyg.v34i1-2.78815
  • Silva, P.G., Roquero, E., Elez, J., Bardají, T., Medialdea, A. (2021). Phases of sedimentation and soil formation in SE Spain during the Holocene (Eastern Betic Cordillera). Geotemas, 18, 1027 – 1030.
  • Simpson, J.J. y Grün, R. (1998). Non-destructive gamma spectrometric U-series dating. Quaternary Science Reviews 17: 1009-1022. https://doi.org/10.1016/S0277-3791(97)00088-7
  • Torres, T., Ortiz, J.E., Sánchez-Palencia, Y., Ros, M., Navarro, F., López-Cillad, I., Galáne, L., A., Ramallo, S., Rodríguez-Estrella, T., Blázquez, A. (2021). The Pleistocene and Holocene records of the Mazarrón Basin (SE Spain). Quaternary International, https://doi.org/10.1016/j.quaint.2020.03.019
  • Turú, V., Carrasco, R.M., López-Saéz, J.A., Pontevedra-Pombal, X., Pedraza, J. Luelmo-Lautenschlaeger, R., Pérez-Díaz, S. et al. (2021). Palaeoenvironmental changes in the Iberian central system during the Late-glacial and Holocene as inferred from geochemical data: A case study of the Navamuño depression in western Spain. Catena, 207. 105689. https://doi.org/10.1016/j.catena.2021.105689
  • Valero-Garcés, B.L., González-Sampériz, P., Gil-Romera, G., Benito, B.M., Moreno, A., Oliva-Urcia, B., Aranbarri, J., García-Prieto, E., Frugone, M., Morellón, M., Arnold, L.J., Demuro, M., Hardiman, M., Blockley, S.P.E., Lane, C.S., (2019). A multi-dating approach to age-modelling long continental records: The 135 ka El Cañizar de Villarquemado sequence (NE Spain). Quaternary Geochronology 54, 101006. https://doi.org/10.1016/j.quageo.2019.101006
  • Walker, M., Head, M.J., Berkelhammer, M. Björck, S. et al. (2018): Formal ratification of the subdivision of the Holocene Series/ Epoch (Quaternary System/Period): two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/ subseries. Episodes, 41 (4), 213-223. https://doi.org/10.18814/epiiugs/2018/018016
  • Williams, A.N. (2012). The use of summed radiocarbon probability distributions in archaeology: a review of methods. Journal of Archaeological Science, 39, 578 – 589. https://doi.org/10.1016/j.jas.2011.07.014
  • Weninger, B., Jöris, O., Danzeglocke, U. (2008). CalPal-2007: Radiocarbon Calibration & Palaeoclimate Research Package, University of Cologne, Germany. http://www.calpal.de
  • Zazo, C., Goy, J.L., Hillaire-Marcel, C., Gillot, P.Y., Soler, V., Gonz!alez, J.A., Dabrio, C.J., Ghaleb, B., 2002. Raised marine sequences of Lanzarote and Fuerteventura revisited – a reappraisal of relative sea-level changes and vertical movements in the eastern Canary Islands during the Quaternary. Quaternary Science Reviews, 21. 2019-2046. https://doi.org/10.1016/S0277-3791(02)00009-4