Propuestas para enfrentar el cambio climático en Colombiaun análisis bibliométrico

  1. Enciso Alfaro , Saudi Yulieth 1
  2. Ruiz Acosta , Liliana Elizabeth 1
  3. Camargo Mayorga, David Andrés 1
  1. 1 Universidad Militar Nueva Granada
    info

    Universidad Militar Nueva Granada

    Bogotá, Colombia

    ROR https://ror.org/05n0gsn30

Journal:
Dictamen Libre

ISSN: 0124-0099

Year of publication: 2023

Issue: 33

Pages: 139-150

Type: Article

DOI: 10.18041/2619-4244/DL.33.11167 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Dictamen Libre

Abstract

The mitigation of climate change poses a change in the decisions that must be undertaken by government institutions, companies and society in general. The objective of this document is to analyze through bibliometrics the articles published by Colombian academic and/or governmental, public and/or private institutions related to climate change and extract the proposals to face this problem in the country. 487 articles published between 2016 and 2018 were analyzed using the VOSviewer software. The findings suggest that the recommendations to implement or modify public policies in Colombia are predominant, however the proposal of climate-smart villages stands out for its orientation towards the integration of communities with science, allowing them to understand climate change and providing them with tools. to address it, as well as industrial ecology for its integrative approach between the self-sufficiency of organic food and the reuse of gray water.

Bibliographic References

  • Aggarwal, P., Jarvis, A., Campbell, B., Zougmoré, R., Khatri-Chhetri, A., Vermeulen, S., Loboguerrero, A. M., Sebastian, L., Kinyangi, J., Bonilla-Findji, O., Radeny, M., Recha, J., Martinez-Baron, D., Ramirez-Villegas, J., Huyer, S., Thornton, P., Wollenberg, E., Hansen, J., Alvarez-Toro, P., … Yen, B. (2018). The climate-smart village approach: Framework of an integrative strategy for scaling up adaptation options in agriculture. Ecology and Society, 23(1). https://doi.org/10.5751/ES-09844-230114
  • Andrade-Castañeda, H. J., Arteaga-Céspedes, C. C., & Segura-Madrigal, M. A. (2017). Emisión de gases de efecto invernadero por uso de combustibles fósiles en Ibagué, Tolima (Colombia). Ciencia & Tecnología Agropecuaria, 18(1), 103-112. https://doi.org/10.21930/rcta.vol18_num1_art:561
  • Arias-Gaviria, J., van der Zwaan, B., Kober, T., & Arango-Aramburo, S. (2017). The prospects for Small Hydropower in Colombia. Renewable Energy, 107, 204-214. https://doi.org/10.1016/j.renene.2017.01.054
  • Bernard, F. L., Duczinski, R. B., Rojas, M. F., Fialho, M. C. C., Carreño, L. Á., Chaban, V. V., Vecchia, F. D., & Einloft, S. (2018). Cellulose based poly(ionic liquids): Tuning cation-anion interaction to improve carbon dioxide sorption. Fuel, 211, 76-86. https://doi.org/10.1016/j.fuel.2017.09.057
  • Berrouet, L. M., Machado, J., & Villegas-Palacio, C. (2018). Vulnerability of socio—ecological systems: A conceptual Framework. Ecological Indicators, 84, 632-647. https://doi.org/10.1016/j.ecolind.2017.07.051
  • Billette de Villemeur, E., & Leroux, J. (2019). Tradable climate liabilities: A thought experiment. Ecological Economics, 164, 106355. https://doi.org/10.1016/j.ecolecon.2019.106355
  • Cardenas, L. M., Franco, C. J., & Dyner, I. (2016). Assessing emissions–mitigation energy policy under integrated supply and demand analysis: The Colombian case. Journal of Cleaner Production, 112, 3759-3773. https://doi.org/10.1016/j.jclepro.2015.08.089
  • Chirinda, N., Arenas, L., Loaiza, S., Trujillo, C., Katto, M., Chaparro, P., Nuñez, J., Arango, J., Martinez-Baron, D., Loboguerrero, A. M., Becerra Lopez-Lavalle, L. A., Avila, I., Guzmán, M., Peters, M., Twyman, J., García, M., Serna, L., Escobar, D., Arora, D., … Barahona, R. (2017). Novel Technological and Management Options for Accelerating Transformational Changes in Rice and Livestock Systems. Sustainability, 9(11), 1891. https://doi.org/10.3390/su9111891
  • Cuellar, Y., Buitrago-Tello, R., & Belalcazar-Ceron, L.-C. (2016). Life cycle emissions from a bus rapid transit system and comparison with other modes of passenger transportation. CTyF - Ciencia, Tecnologia y Futuro, 6(3), 123-134. Scopus.
  • CMNUCC. (1992). Convención Marco de las Naciones Unidas sobre el Cambio Climático. Recuperado de: https://unfccc.int/resource/docs/convkp/convsp.pdf
  • De Guttry, C., Süsser, D., & Döring, M. (2019). Situating climate change: Psychological distances as tool to understand the multifaceted dimensions of climate change meanings. Geoforum, 104, 92-100. https://doi.org/10.1016/j.geoforum.2019.06.015
  • Duque, E., González, J., & Restrepo, J. (2017). The clean development mechanism as a means to assess the Kyoto Protocol in Colombia. International Journal of Renewable Energy Research, 7(3), 1205-1212. Scopus.
  • Duque, E., Patiño, J., & Veléz, L. (2016). Implementation of the ACM0002 methodology in small hydropower plants in Colombia under the Clean Development Mechanism. International Journal of Renewable Energy Research, 6(1), 21-33. Scopus.
  • Feng, A., & Chao, Q. (2020). An overview of assessment methods and analysis for climate change risk in China. Physics and Chemistry of the Earth, Parts A/B/C, 102861. https://doi.org/10.1016/j.pce.2020.102861
  • Garg, M., & Kumar, M. (2018). Identifying influential segments from word co-occurrence networks using AHP. Cognitive Systems Research, 47, 28-41. https://doi.org/10.1016/j.cogsys.2017.07.003
  • Gonzalez-Salazar, M. A., Venturini, M., Poganietz, W.-R., Finkenrath, M., Kirsten, T., Acevedo, H., & Spina, P. R. (2016). A general modeling framework to evaluate energy, economy, land-use and GHG emissions nexus for bioenergy exploitation. Applied Energy, 178, 223-249. https://doi.org/10.1016/j.apenergy.2016.06.039
  • Guarda, E. L. A. da, Domingos, R. M. A., Jorge, S. H. M., Durante, L. C., Sanches, J. C. M., Leão, M., & Callejas, I. J. A. (2020). The influence of climate change on renewable energy systems designed to achieve zero energy buildings in the present: A case study in the Brazilian Savannah. Sustainable Cities and Society, 52, 101843. https://doi.org/10.1016/j.scs.2019.101843
  • IPCC. (2015). Cambio Climático 2014: informe de síntesis. Recuperado de: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf
  • Khavarian-Garmsir, A. R., Pourahmad, A., Hataminejad, H., & Farhoodi, R. (2019). Climate change and environmental degradation and the drivers of migration in the context of shrinking cities: A case study of Khuzestan province, Iran. Sustainable Cities and Society, 47, 101480. https://doi.org/10.1016/j.scs.2019.101480
  • Markkula, I., Turunen, M., & Rasmus, S. (2019). A review of climate change impacts on the ecosystem services in the Saami Homeland in Finland. Science of The Total Environment, 692, 1070-1085. https://doi.org/10.1016/j.scitotenv.2019.07.272
  • Martínez-Jaramillo, J. E., Arango-Aramburo, S., Álvarez-Uribe, K. C., & Jaramillo-Álvarez, P. (2017). Assessing the impacts of transport policies through energy system simulation: The case of the Medellin Metropolitan Area, Colombia. Energy Policy, 101, 101-108. https://doi.org/10.1016/j.enpol.2016.11.026
  • Mwongera, C., Shikuku, K. M., Twyman, J., Läderach, P., Ampaire, E., Van Asten, P., Twomlow, S., & Winowiecki, L. A. (2017). Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies. Agricultural Systems, 151, 192-203. https://doi.org/10.1016/j.agsy.2016.05.009
  • Navarrete, D., Sitch, S., Aragão, L. E. O. C., Pedroni, L., & Duque, A. (2016). Conversion from forests to pastures in the Colombian Amazon leads to differences in dead wood dynamics depending on land management practices. Journal of Environmental Management, 171, 42-51. https://doi.org/10.1016/j.jenvman.2016.01.037
  • Osorio, A. F., Ortega, S., & Arango-Aramburo, S. (2016). Assessment of the marine power potential in Colombia. Renewable and Sustainable Energy Reviews, 53, 966-977. https://doi.org/10.1016/j.rser.2015.09.057
  • Osorio, Andrés F., Arias-Gaviria, J., Devis-Morales, A., Acevedo, D., Velasquez, H. I., & Arango-Aramburo, S. (2016). Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands. Energy Policy, 98, 713-724. https://doi.org/10.1016/j.enpol.2016.05.008
  • Pardo Martínez, C. I., & Alfonso P., W. H. (2018). Climate change in Colombia: A study to evaluate trends and perspectives for achieving sustainable development from society. International Journal of Climate Change Strategies and Management, 10(4), 632-652. https://doi.org/10.1108/IJCCSM-04-2017-0087
  • Phillips, J. (2016). The Geocybernetic Assessment Matrix (GAM)—A new assessment tool for evaluating the level and nature of sustainability or unsustainability. Environmental Impact Assessment Review, 56, 88-101. https://doi.org/10.1016/j.eiar.2015.09.003
  • Sanchis, I. V., Franco, R. I., Zuriaga, P. S., & Fernández, P. M. (2020). Risk of increasing temperature due to climate change on operation of the Spanish rail network. Transportation Research Procedia, 45, 5-12. https://doi.org/10.1016/j.trpro.2020.02.056
  • Sanyé-Mengual, E., Martinez-Blanco, J., Finkbeiner, M., Cerdà, M., Camargo, M., Ometto, A. R., Velásquez, L. S., Villada, G., Niza, S., Pina, A., Ferreira, G., Oliver-Solà, J., Montero, J. I., & Rieradevall, J. (2018). Urban horticulture in retail parks: Environmental assessment of the potential implementation of rooftop greenhouses in European and South American cities. Journal of Cleaner Production, 172, 3081-3091. https://doi.org/10.1016/j.jclepro.2017.11.103
  • Seguel, F., Valenzuela, S., & Sanhueza, O. (2012). Corriente Epistemológica Positivista y su Influencia en la Generación del Conocimiento. Aquichan, 12(2), 160-168.
  • Shaffril, H. A. M., Krauss, S. E., & Samsuddin, S. F. (2018). A systematic review on Asian’s farmers’ adaptation practices towards climate change. Science of The Total Environment, 644, 683-695. https://doi.org/10.1016/j.scitotenv.2018.06.349
  • Sierra, C. A., Mahecha, M., Poveda, G., Álvarez-Dávila, E., Gutierrez-Velez, V. H., Reu, B., Feilhauer, H., Anáya, J., Armenteras, D., Benavides, A. M., Buendia, C., Duque, Á., Estupiñan-Suarez, L. M., González, C., Gonzalez-Caro, S., Jimenez, R., Kraemer, G., Londoño, M. C., Orrego, S. A., … Skowronek, S. (2017). Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science & Policy, 76, 40-49. https://doi.org/10.1016/j.envsci.2017.06.011
  • Tonmoy, F. N., Wainwright, D., Verdon-Kidd, D. C., & Rissik, D. (2018). An investigation of coastal climate change risk assessment practice in Australia. Environmental Science & Policy, 80, 9-20. https://doi.org/10.1016/j.envsci.2017.11.003
  • Tost, M., Hitch, M., Lutter, S., Feiel, S., & Moser, P. (2020). Carbon prices for meeting the Paris agreement and their impact on key metals. The Extractive Industries and Society. https://doi.org/10.1016/j.exis.2020.01.012
  • Vargas, A., Saavedra, O. R., Samper, M. E., Rivera, S., & Rodriguez, R. (2016). Latin American Energy Markets: Investment Opportunities in Nonconventional Renewables. IEEE Power and Energy Magazine, 14(5), 38-47. https://doi.org/10.1109/MPE.2016.2573862
  • Vargas, V., & Restrepo, I. (2018). Construction of index with artificial intelligence to evaluate vulnerability to climate change in Andean tropical micro-watersheds. Study case in Colombia. Dyna, 85(204), 194-203.
  • Wang, Z., Zhao, Y., & Wang, B. (2018). A bibliometric analysis of climate change adaptation based on massive research literature data. Journal of Cleaner Production, 199, 1072-1082. https://doi.org/10.1016/j.jclepro.2018.06.183
  • Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment analysis application in sustainability: The origins, development and future directions. European Journal of Operational Research, 264(1), 1-16. https://doi.org/10.1016/j.ejor.2017.06.023
  • Zomer, R. J., Bossio, D. A., Sommer, R., & Verchot, L. V. (2017). Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Scientific Reports, 7(1), 1-8. https://doi.org/10.1038/s41598-017-15794-8