Models and references that influence gender stereotypes in STEMA case study in Spain

  1. Verdugo-Castro, Sonia 1
  2. García-Holgado, Alicia 1
  3. Sánchez-Gómez, Mª Cruz 1
  4. García-Peñalvo, Francisco José 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Journal:
Revista de investigación educativa, RIE

ISSN: 0212-4068 1989-9106

Year of publication: 2025

Issue: 43

Type: Article

DOI: 10.6018/RIE.597191 DIALNET GOOGLE SCHOLAR lock_openDIGITUM editor

More publications in: Revista de investigación educativa, RIE

Abstract

The science, technology, engineering, and mathematics (STEM) sector is an academic and professional field with high gender disparity figures despite being a field with a low unemployment rate. The “Questionnaire with University Students on STEM Studies in Higher Education” (QSTEMHE) was designed to determine the opinion of the Spanish university population on all branches of knowledge about gender stereotypes in STEM studies. This validated instrument was applied to a university sample of 2101 people from different Spanish universities. A quantitative methodology and the non-experimental ex-post-facto method were used, employing a simple random sampling technique. This study aims to analyse the relationship established between the models and references that university students have had and their manifestation of gender stereotypes on the ability to perform in STEM higher education studies. Among the main results, gender stereotypes about STEM degrees persist, considering them masculinised and male-oriented. Furthermore, the study confirms that models and references taken into account when choosing higher education studies impact the perception of men and women regarding stereotypes in STEM.

Bibliographic References

  • Banchefsky, S., & Park, B. (2018). Negative Gender Ideologies and Gender-Science Stereotypes Are More Pervasive in Male-Dominated Academic Disciplines. Social Sciences, 7(2), 27. https://doi.org/10.3390/socsci7020027
  • Barthelemy, R. S., McCormick, M., & Henderson, C. (2016). Gender discrimination in physics and astronomy: Graduate student experiences of sexism and gender microaggressions. Physical Review Physics Education Research, 12(2), 020119. https://doi.org/10.1103/PhysRevPhysEducRes.12.020119
  • Berryman, S. E. (1983). Who will do science? Minority and female attainment of science and mathematics degrees: Trends and causes. Rockefeller Foundation.
  • Bian, L., Leslie, S.-J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355(6323), 389–391. https://doi.org/10.1126/science.aah6524
  • Blackburn, H. (2017). The Status of Women in STEM in Higher Education: A Review of the Literature 2007–2017. Science and Technology Libraries, 36(3), 235–273. https://doi.org/10.1080/0194262X.2017.1371658
  • Blázquez, M., Castro, M., Tovar, E., Llamas, M., Plaza, I., & Meier, R. (2011). Are engineering students decreasing? A Spanish case study. 2011 IEEE Global Engineering Education Conference (EDUCON), 242–251. https://doi.org/10.1109/EDUCON.2011.5773144
  • Blickenstaff, J. C. (2005). Women and science careers: Leaky pipeline or gender filter? Gender and Education, 17(4), 369–386. https://doi.org/10.1080/09540250500145072
  • Bourdieu, P. (1984). La représentation de la position sociale. Actes de La Recherche En Sciences Sociales, 52(1), 14–15. https://doi.org/10.3406/arss.1984.3521
  • Chan, R. C. H. (2022). A social cognitive perspective on gender disparities in self-efficacy, interest, and aspirations in science, technology, engineering, and mathematics (STEM): The influence of cultural and gender norms. International Journal of STEM Education, 9(1), 37. https://doi.org/10.1186/s40594-022-00352-0
  • Corbett, C., & Hill, C. (2015). Solving the equation: The variables for women’s success in engineering and computing. American Association of University Women.
  • Correll, S. J. (2004). Constraints into Preferences: Gender, Status, and Emerging Career Aspirations. American Sociological Review, 69(1), 93–113. https://doi.org/10.1177/000312240406900106
  • Dennehy, T. C., & Dasgupta, N. (2017). Female peer mentors early in college increase women’s positive academic experiences and retention in engineering. Proceedings of the National Academy of Sciences, 114(23), 5964–5969. https://doi.org/10.1073/pnas.1613117114
  • Diekman, A. B., Brown, E. R., Johnston, A. M., & Clark, E. K. (2010). Seeking Congruity Between Goals and Roles: A New Look at Why Women Opt Out of Science, Technology, Engineering, and Mathematics Careers. Psychological Science, 21(8), 1051–1057. https://doi.org/10.1177/0956797610377342
  • Diekman, A. B., Weisgram, E. S., & Belanger, A. L. (2015). New Routes to Recruiting and Retaining Women in STEM: Policy Implications of a Communal Goal Congruity Perspective. Social Issues and Policy Review, 9(1), 52–88. https://doi.org/10.1111/sipr.12010
  • Eccles, J. S., & Wang, M.-T. (2016). What motivates females and males to pursue careers in mathematics and science? International Journal of Behavioral Development, 40(2), 100–106. https://doi.org/10.1177/0165025415616201
  • Eddy, S. L., & Brownell, S. E. (2016). Beneath the numbers: A review of gender disparities in undergraduate education across science, technology, engineering, and math disciplines. Physical Review Physics Education Research, 12(2), 020106. https://doi.org/10.1103/PhysRevPhysEducRes.12.020106
  • EDUCAbase. (2022). Estadística del Alumnado Enseñanzas Universitarias (Grado, 1o y 2o ciclo, Máster y Doctorado). Ministerio de Educación y Formación Profesional y Deportes. https://www.educacionyfp.gob.es/servicios-al-ciudadano/estadisticas.html
  • Finzel, B., Deininger, H., & Schmid, U. (2018). From beliefs to intention: Mentoring as an approach to motivate female high school students to enrol in computer science studies. In Proceedings of the 4th Conference on Gender & IT: 14-15 May 2018 (pp. 251-260). University Heilbronn. https://doi.org/10.1145/3196839.3196879
  • Gonsalves, A. J., Danielsson, A., & Pettersson, H. (2016). Masculinities and experimental practices in physics: The view from three case studies. Physical Review Physics Education Research, 12(2), 020120. https://doi.org/10.1103/PhysRevPhysEducRes.12.020120
  • Good, C., Aronson, J., & Harder, J. A. (2008). Problems in the pipeline: Stereotype threat and women’s achievement in high-level math courses. Journal of Applied Developmental Psychology, 29(1), 17–28. https://doi.org/10.1016/j.appdev.2007.10.004
  • Gottfried, M., Owens, A., Williams, D., Kim, H. Y., & Musto, M. (2017). Friends and family: A literature review on how high school social groups influence advanced math and science coursetaking. Education Policy Analysis Archives, 25, 62. https://doi.org/10.14507/epaa.25.2857
  • Hall, W. M., Schmader, T., & Croft, E. (2015). Engineering Exchanges: Daily Social Identity Threat Predicts Burnout Among Female Engineers. Social Psychological and Personality Science, 6(5), 528–534. https://doi.org/10.1177/1948550615572637
  • Hernández Méndez, G. (2013). Habitus, estereotipos y roles de género. Percepciones de profesores y estudiantes. Revista Docencia Universitaria, 14(1), 89–105. https://revistas.uis.edu.co/index.php/revistadocencia/article/view/4227
  • Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6th ed.). McGraw-Hill Education.
  • Heybach, J., & Pickup, A. (2017). Whose STEM? Disrupting the Gender Crisis Within STEM. Educational Studies-Aesa, 53(6), 614–627. https://doi.org/10.1080/00131946.2017.1369085
  • Kang, J., Hense, J., Scheersoi, A., & Keinonen, T. (2019). Gender study on the relationships between science interest and future career perspectives. International Journal of Science Education, 41(1), 80–101. https://doi.org/10.1080/09500693.2018.1534021
  • Kaye, L. K., Gresty, C. E., & Stubbs-Ennis, N. (2017). Exploring Stereotypical Perceptions of Female Players in Digital Gaming Contexts. Cyberpsychology, Behavior, and Social Networking, 20(12), 740–745. https://doi.org/10.1089/cyber.2017.0294
  • Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a Unifying Social Cognitive Theory of Career and Academic Interest, Choice, and Performance. Journal of Vocational Behavior, 45(1), 79–122. https://doi.org/10.1006/jvbe.1994.1027
  • Master, A., Cheryan, S., & Meltzoff, A. N. (2016). Computing Whether She Belongs: Stereotypes Undermine Girls’ Interest and Sense of Belonging in Computer Science. Journal of Educational Psychology, 108(3), 424–437. https://doi.org/10.1037/edu0000061
  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079. https://doi.org/10.1080/0950069032000032199
  • Pomerantz, E. M., & Eaton, M. M. (2001). Maternal intrusive support in the academic context: Transactional socialization processes. Developmental Psychology, 37(2), 174–186. https://doi.org/10.1037/0012-1649.37.2.174
  • Sadler, P. M., Sonnert, G., Hazari, Z., & Tai, R. (2012). Stability and volatility of STEM career interest in high school: A gender study. Science Education, 96(3), 411–427. https://doi.org/10.1002/sce.21007
  • Shapiro, J., & Williams, A. (2012). The Role of Stereotype Threats in Undermining Girls’ and Women’s Performance and Interest in STEM Fields. Sex Roles, 66, 175–183. https://doi.org/10.1007/s11199-011-0051-0
  • Stoeger, H., Hopp, M., & Ziegler, A. (2017). Online Mentoring as an Extracurricular Measure to Encourage Talented Girls in STEM (Science, Technology, Engineering, and Mathematics): An Empirical Study of One-on-One Versus Group Mentoring. Gifted Child Quarterly, 61(3), 239–249. https://doi.org/10.1177/0016986217702215
  • Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. A. (2011). STEMing the tide: Using ingroup experts to inoculate women’s self-concept in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 100(2), 255–270. https://doi.org/10.1037/a0021385
  • Tandrayen-Ragoobur, V., & Gokulsing, D. (2022). Gender gap in STEM education and career choices: What matters? Journal of Applied Research in Higher Education, 14(3), 1021–1040. https://doi.org/10.1108/JARHE-09-2019-0235
  • Thébaud, S., & Charles, M. (2018). Segregation, Stereotypes, and STEM. Social Sciences, 7(7), 111. https://doi.org/10.3390/socsci7070111
  • Verdugo-Castro, S., García-Holgado, A., & Sánchez-Gómez, M. C. (2022). The gender gap in higher STEM studies: A systematic literature review. Heliyon, 8(8), e10300. https://doi.org/10.1016/j.heliyon.2022.e10300
  • Verdugo-Castro, S., Sánchez-Gómez, M. C., & García-Holgado, A. (2022a). Opiniones y percepciones sobre los estudios superiores STEM: Un estudio de caso exploratorio en España. Education in the Knowledge Society, 23, 1-15. https://doi.org/10.14201/eks.27529
  • Verdugo-Castro, S., Sánchez-Gómez, M. C., & García-Holgado, A. (2022b). University students’ views regarding gender in STEM studies: Design and validation of an instrument. Education and Information Technologies, 27(9), 12301–12336. https://doi.org/10.1007/s10639-022-11110-8
  • Verdugo-Castro, S., Sánchez-Gómez, M. C., García-Holgado, A., & Bakieva, M. (2020). Pilot study on university students’ opinion about STEM studies at higher education. In F. J. García-Peñalvo (Ed.), Proceedings of the Eight International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM 2020) (Salamanca, Spain, October 21-23, 2020) (pp. 158–165). University of Salamanca.