Advancing Forest Fire Risk Evaluation: An Integrated Framework for Visualizing Area-Specific Forest Fire Risks Using UAV Imagery, Object Detection and Color Mapping Techniques

  1. Aibin, Michal 1
  2. Li, Yuanxi 1
  3. Sharma, Rohan 1
  4. Ling, Junyan 1
  5. Ye, Jiannan 1
  6. Lu, Jianming 1
  7. Zhang, Jiesi 1
  8. Coria, Lino 1
  9. Huang, Xingguo 1
  10. Yang, Zhiyuan 1
  11. Ke, Lili 1
  12. Zou, Panhaoqi 1
  13. Gullett, Brian K. ed. lit.
  14. Aurell, Johanna ed. lit.
  15. Velanas, Pantelis ed. lit.
  16. González-Aguilera, Diego ed. lit.
  17. Margariti, Katerina ed. lit.
  18. Broadbent, Eben N. ed. lit.
  1. 1 Khoury College of Computer Sciences, Northeastern University, 410 West Georgia Street, Vancouver, BC V6B 1Z3, Canada
Journal:
Drones

ISSN: 2504-446X

Year of publication: 2024

Volume: 8

Issue: 2

Pages: 39

Type: Article

DOI: 10.3390/DRONES8020039 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Drones

Funding information

Funders

Bibliographic References

  • Natural Resources Canada (2023, May 01). How Do Forests Benefit Canadians?, Available online: https://www.nrcan.gc.ca/our-natural-resources/forests/state-canadas-forests-report/how-do-forests-benefit-canadians/16509.
  • BC Government (2023, April 17). 2020 BC Forest Sector—Statistics Summary, Available online: https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/forestry/forest-industry-economics/economic-state/2020_bc_forest_sector_-_statistics_summary.pdf.
  • Skala, (2008), Period. Biol., 110, pp. 205
  • Wu, J., Chantiry, X.E., Gimpel, T., and Aibin, M. (2022, January 18–20). AI-Based Classification to Facilitate Preservation of British Columbia Endangered Birds Species. Proceedings of the 2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada.
  • BC Wildfire Service (2023, April 17). Wildfire Season Summary—Province of British Columbia, Available online: https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-history/wildfire-season-summary.
  • Aibin, (2021), IEEE Access, 9, pp. 167580, 10.1109/ACCESS.2021.3136226
  • Natural Resources Canada (2023, May 01). FBP Fuel Type Descriptions, Available online: https://cwfis.cfs.nrcan.gc.ca/background/fueltypes/c1.
  • Luo, Y., Lu, Q., Liu, J., Fu, Q., Harkin, J., McDaid, L., Martínez-Corral, J., and Biot-Marí, G. (2018, January 8–10). Forest fire detection using spiking neural networks. Proceedings of the 15th ACM International Conference on Computing Frontiers, New York, NY, USA.
  • Kilic, S., and Ozkan, O. (2019, January 22–24). A self-adaptive UAV routing for forest fire risk mitigation: A conceptual model. Proceedings of the 2019 Summer Simulation Conference, San Diego, CA, USA.
  • Lv, H., and Chen, X. (2021, January 22–24). Research and Implementation of Forest Fire Smoke Detection Based on ResNet Transfer Learning. Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering, New York, NY, USA.
  • Kasyap, (2022), Comput. Intell. Neurosci., 2022, pp. 12, 10.1155/2022/3170244
  • Lee, A., Jiang, B., Zeng, I., and Aibin, M. (2022, January 26–29). Ocean Medical Waste Detection for CPU-Based Underwater Remotely Operated Vehicles (ROVs). Proceedings of the 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA.
  • Kuanysheva, A., Graystone, A., Lam, J., Jia, J., and Aibin, M. (2022, January 26–29). Identification of Bioluminescent Deep Ocean Macro Organisms Using Computer Vision. Proceedings of the 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA.
  • Sharma, R., Patel, K., Shah, S., and Aibin, M. (2022). Aerial Footage Analysis Using Computer Vision for Efficient Detection of Points of Interest Near Railway Tracks. Aerospace, 9.
  • Zhao, L., Zhi, L., Zhao, C., and Zheng, W. (2022). Fire-YOLO: A Small Target Object Detection Method for Fire Inspection. Sustainability, 14.
  • Goyal, (2020), Int. J. Innov. Technol. Explor. Eng. (IJITEE) Vol., 9, pp. 1357, 10.35940/ijitee.F4106.049620
  • Li, Y., Shen, Z., Li, J., and Xu, Z. (2022, January 8–10). A Deep Learning Method based on SRN-YOLO for Forest Fire Detection. Proceedings of the 2022 5th International Symposium on Autonomous Systems (ISAS), Hangzhou, China.
  • Wang, S., Chen, T., Lv, X., Zhao, J., Zou, X., Zhao, X., Xiao, M., and Wei, H. (2021, January 22–24). Forest Fire Detection Based on Lightweight Yolo. Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China.
  • Abdusalomov, A., Baratov, N., Kutlimuratov, A., and Whangbo, T.K. (2021). An improvement of the fire detection and classification method using YOLOv3 for surveillance systems. Sensors, 21.
  • Jiao, Z., Zhang, Y., Mu, L., Xin, J., Jiao, S., Liu, H., and Liu, D. (2020, January 22–24). A yolov3-based learning strategy for real-time uav-based forest fire detection. Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China.
  • Khan, S., and Khan, A. (2022). FFireNet: Deep Learning Based Forest Fire Classification and Detection in Smart Cities. Symmetry, 14.
  • Yu, K., Hao, Z., Post, C.J., Mikhailova, E.A., Lin, L., Zhao, G., Tian, S., and Liu, J. (2022). Comparison of Classical Methods and Mask R-CNN for Automatic Tree Detection and Mapping Using UAV Imagery. Remote Sens., 14.
  • Jiang, X., Wu, Z., Han, S., Yan, H., Zhou, B., and Li, J. (2023). A multi-scale approach to detecting standing dead trees in UAV RGB images based on improved faster R-CNN. PLoS ONE, 18.
  • Harris, R.C., Kennedy, L.M., Pingel, T.J., and Thomas, V.A. (2022). Assessment of Canopy Health with Drone-Based Orthoimagery in a Southern Appalachian Red Spruce Forest. Remote Sens., 14.
  • Zhang, (2022), IEEE Access, 10, pp. 46589, 10.1109/ACCESS.2022.3171585
  • Wang, (2022), Comput. Electron. Agric., 198, pp. 107035, 10.1016/j.compag.2022.107035
  • Kislov, (2021), Remote Sens. Ecol. Conserv., 7, pp. 355, 10.1002/rse2.194
  • Shao, (2022), J. For. Res., 34, pp. 963, 10.1007/s11676-022-01559-1
  • Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014, January 23–28). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA.
  • Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.
  • Terven, J., and Cordova-Esparza, D. (2023). A Comprehensive Review of YOLO: From YOLOv1 to YOLOv8 and Beyond. arXiv.
  • Schubert, (2017), ACM Trans. Database Syst. (TODS), 42, pp. 1, 10.1145/3068335
  • Barber, (1996), ACM Trans. Math. Softw. (TOMS), 22, pp. 469, 10.1145/235815.235821