A Novel Technique Based on Machine Learning for Detecting and Segmenting Trees in Very High Resolution Digital Images from Unmanned Aerial Vehicles

  1. Kouvaras, Loukas 2
  2. Petropoulos, George P. 2
  3. González-Aguilera, Diego ed. lit. 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 Harokopio University
    info

    Harokopio University

    Atenas, Grecia

    ROR https://ror.org/02k5gp281

Journal:
Drones

ISSN: 2504-446X

Year of publication: 2024

Volume: 8

Issue: 2

Pages: 43

Type: Article

DOI: 10.3390/DRONES8020043 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Drones

Bibliographic References

  • Anand, A., Pandey, P.C., Petropoulos, G.P., Pavlides, A., Srivastava, P.K., Sharma, J.K., and Malhi, R.K.M. (2020). Use of hyperion for mangrove forest carbon stock assessment in Bhitarkanika Forest Reserve: A contribution towards blue carbon initiative. Remote Sens., 12.
  • Fragou, S., Kalogeropoulos, K., Stathopoulos, N., Louka, P., Srivastava, P.K., Karpouzas, S., Kalivas, D., and Petropoulos, G.P. (2020). Quantifying land cover changes in a Mediterranean environment using landsat TM and support vector machines. Forests, 11.
  • Srivastava, P.K., Petropoulos, G.P., Prasad, R., and Triantakonstantis, D. (2021). Random forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture. ISPRS Int. J. Geo-Inf., 10.
  • Petropoulos, (2020), Int. J. Remote Sens., 42, pp. 1623, 10.1080/01431161.2020.1841319
  • Achille, (2015), Sensors, 15, pp. 15520, 10.3390/s150715520
  • Plesoianu, A.I., Stupariu, M.S., Sandric, I., Patru-Stupariu, I., and Draguī, L. (2020). Individual tree-crown detection and species classification in very high-resolution remote sensing imagery using a deep learning ensemble model. Remote Sens., 12.
  • Hao, (2021), ISPRS J. Photogramm. Remote Sens., 178, pp. 112, 10.1016/j.isprsjprs.2021.06.003
  • Deng, (2018), ISPRS J. Photogramm. Remote Sens., 145, pp. 3, 10.1016/j.isprsjprs.2018.04.003
  • Ding, (2018), ISPRS J. Photogramm. Remote Sens., 141, pp. 208, 10.1016/j.isprsjprs.2018.05.005
  • Xuan, (2020), IEEE Access, 8, pp. 9325, 10.1109/ACCESS.2020.2964540
  • Li, W., Fu, H., Yu, L., and Cracknell, A. (2017). Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sens., 9.
  • Weinstein, B.G., Marconi, S., Bohlman, S., Zare, A., and White, E. (2019). Individual treecrown detection in RGB Imagery using semi-supervised deep learning neural networks. Remote Sens., 11.
  • Neupane, B., Horanont, T., and Hung, N.D. (2019). Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV). PLoS ONE, 14.
  • Gordana, (2020), Remote Sens. Lett., 11, pp. 847, 10.1080/2150704X.2020.1784491
  • Safonova, A., Guirado, E., Maglinets, Y., Alcaraz-Segura, D., and Tabik, S. (2021). Olive Tree Biovolume from UAV Multi-Resolution Image Segmentation with Mask R-CNN. Sensors, 21.
  • Sandric, (2022), Geocarto Int., 37, pp. 10459, 10.1080/10106049.2022.2036824
  • FAIR (2022, December 15). Detectron2. Available online: https://github.com/facebookresearch/detectron2.
  • Thenkabail, (2000), Remote Sens. Environ., 71, pp. 158, 10.1016/S0034-4257(99)00067-X
  • Gitelson, (2014), Remote Sens. Environ., 147, pp. 108, 10.1016/j.rse.2014.02.014
  • Heldens, (2020), J. Econ. Entomol., 113, pp. 1, 10.1093/jee/toz268
  • Ciraolo, G., and Tauro, F. (2023). Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments, Elsevier.
  • Ciraolo, G., Capodici, F., Maltese, A., Ippolito, M., Provenzano, G., and Manfreda, S. (2022). UAS dataset for Crop Water Stress Index computation and Triangle Method applications (rev 1). Zenodo.
  • Lin, T.L., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., and Dollar, P. (2014). Microsoft COCO: Common Objects in Context. arXiv.
  • Petropoulos, (2015), J. Appl. Remote Sens., 9, pp. 096088, 10.1117/1.JRS.9.096088
  • Huang, (2002), Int. J. Remote Sens., 23, pp. 725, 10.1080/01431160110040323
  • Chuvieco, E. (2016). Fundamentals of Satellite Remote Sensing: An Environmental Approach, CRC Press. [2nd ed.].
  • Tehrany, (2013), Geocarto Int., 29, pp. 351, 10.1080/10106049.2013.768300
  • Olariu, (2017), Eur. J. Remote Sens., 50, pp. 496, 10.1080/22797254.2017.1365570
  • Foody, (2002), Remote Sens. Environ., 80, pp. 185, 10.1016/S0034-4257(01)00295-4
  • Kontoes, (2009), Int. J. Appl. Earth Obs. Geoinf., 11, pp. 299
  • Petropoulos, (2011), Int. J. Appl. Earth Obs. Geoinf., 18, pp. 344
  • Rouse, J.W., Haas, R.H., Deering, D.W., Schell, J.A., and Harlan, J.C. (1974). Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, NASA/GSFC Type III Final Report.
  • Kaufman, (1992), IEEE Trans. Geosci. Remote Sensing, 30, pp. 261, 10.1109/36.134076
  • Lorenzen, (1986), Ecography, 9, pp. 305, 10.1111/j.1600-0587.1986.tb01224.x
  • Zhang, (2021), Precis. Agric, 22, pp. 2007, 10.1007/s11119-021-09813-y
  • Manfreda, S., and Ben Dor, E. (2023). Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments, Elsevier.
  • Tang, G., Ni, J., Zhao, Y., Gu, Y., and Cao, W. (2024). A Survey of Object Detection for UAVs Based on Deep Learning. Remote Sens., 16.