A Stochastic Drone-Scheduling Problem with Uncertain Energy Consumption

  1. He, Yandong 12
  2. Zheng, Zhong 1
  3. Li, Huilin 4
  4. Deng, Jie 3
  5. González-Aguilera, Diego ed. lit.
  6. Wei, Henglai ed. lit.
  7. Huang, Hailong ed. lit.
  8. Wang, Caizheng ed. lit.
  9. He, Xiangkun ed. lit.
  1. 1 College of Business, Nanning University, Nanning 541699, China
  2. 2 Shenzhen Research Institute of Big Data, Shenzhen 518172, China
  3. 3 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
  4. 4 University of Saint Louis
    info

    University of Saint Louis

    Tuguegarao, Filipinas

    ROR https://ror.org/059jntb51

Journal:
Drones

ISSN: 2504-446X

Year of publication: 2024

Volume: 8

Issue: 9

Pages: 430

Type: Article

DOI: 10.3390/DRONES8090430 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Drones

Funding information

Funders

  • Internal Project Fund from Shenzhen Research Institute of Big Data
    • J00220230006
  • Young and Middle-Aged Teachers Basic Ability Improvement Project of Guangxi University
    • 2023KY1862
  • Basic and Applied Basic Research Fund of Guangdong
    • 2020A1515110785
  • Guangxi University Guangxi Development Strategy Institute
    • 2023HX107

Bibliographic References

  • He, (2017), Transp. Res. Part D Transp. Environ., 55, pp. 202, 10.1016/j.trd.2017.07.001
  • Liu, (2019), Comput. Oper. Res., 111, pp. 1, 10.1016/j.cor.2019.05.024
  • Es Yurek, E. (2024). Impact of Drone Battery Recharging Policy on Overall Carbon Emissions: The Traveling Salesman Problem with Drone. Drones, 8.
  • Huang, (2021), IEEE Trans. Intell. Transp. Syst., 23, pp. 15043, 10.1109/TITS.2021.3136218
  • Kim, (2017), J. Abbr., 88, pp. 163
  • Liu, Y., Shi, J., Liu, Z., Huang, J., and Zhou, T. (2019). Two-layer routing for high-voltage powerline inspection by cooperated ground vehicle and drone. Energies, 12.
  • Dukkanci, (2024), Eur. J. Oper. Res., 316, pp. 397, 10.1016/j.ejor.2023.10.036
  • Macrina, (2020), Transp. Res. Part C Emerg. Technol., 120, pp. 102762, 10.1016/j.trc.2020.102762
  • Kim, (2019), Ann. Oper. Res., 283, pp. 1283, 10.1007/s10479-018-3114-6
  • Huang, (2021), IEEE Trans. Intell. Transp. Syst., 23, pp. 13040, 10.1109/TITS.2021.3119343
  • Cheng, (2020), J. Abbr., 139, pp. 364
  • Pasha, (2022), IEEE Trans. Intell. Transp. Syst., 23, pp. 14224, 10.1109/TITS.2022.3155072
  • Yildiz, (2019), Transp. Sci., 53, pp. 1372, 10.1287/trsc.2018.0887
  • Simoni, (2023), Transp. Res. Part C Emerg. Technol., 149, pp. 104055, 10.1016/j.trc.2023.104055
  • Ioannidis, C., Boutsi, A.-M., Tsingenopoulos, G., Soile, S., Chliverou, R., and Potsiou, C. (2023). Paving the Way for Last-Mile Delivery in Greece: Data-Driven Performance Analysis with a Customized Quadrotor. Drones, 8.
  • Yu, N., Dong, B., Qu, Y., Zhang, M., Wang, Y., Dai, H., and Yao, C. (2023). Drones Routing with Stochastic Demand. Drones, 7.
  • Glick, (2022), Transp. Res. Rec., 2676, pp. 242, 10.1177/03611981211036685
  • Hamdi, (2021), IEEE Trans. Serv. Comput., 15, pp. 2685, 10.1109/TSC.2021.3066006
  • Wang, (2023), Omega, 119, pp. 102872, 10.1016/j.omega.2023.102872
  • Li, (2016), Transp. Res. Part C Emerg. Technol., 67, pp. 95, 10.1016/j.trc.2016.01.014
  • Lyu, J., and He, Y. (2021). A two-stage hybrid metaheuristic for a low-carbon vehicle routing problem in hazardous chemicals road transportation. Appl. Sci., 11.
  • Zhou, (2019), IEEE Access, 7, pp. 159013, 10.1109/ACCESS.2019.2950442
  • Zhou, (2022), J. Oper. Res. Soc., 73, pp. 1362, 10.1080/01605682.2021.1911603
  • He, (2020), Comput. Ind. Eng., 145, pp. 106513, 10.1016/j.cie.2020.106513
  • He, (2020), Kybernetes, 49, pp. 1267, 10.1108/K-05-2018-0236
  • Hansen, (1997), Comput. Oper. Res., 24, pp. 1097, 10.1016/S0305-0548(97)00031-2