An Innovative New Approach to Light Pollution Measurement by Drone
-
Bobkowska, Katarzyna
1
-
Burdziakowski, Pawel
1
-
Tysiac, Pawel
1
- Pulas, Mariusz 3
- González-Aguilera, Diego ed. lit. 2
-
1
Gdańsk University of Technology
info
-
2
Universidad de Salamanca
info
- 3 Pelixar S.A., Aleja Zwyciestwa 96/98, 81-451 Gdynia, Poland
ISSN: 2504-446X
Year of publication: 2024
Volume: 8
Issue: 9
Pages: 504
Type: Article
More publications in: Drones
Funding information
Funders
-
Gdansk University of Technology
- DEC-42/2020/IDUB/I.3.3
Bibliographic References
- (2024, August 01). Grand View Research Commercial UAV Market Size, Share & Trends Analysis Report by Product (Fixed Wing, Rotary Blade, Nano, Hybrid), by Application (Agriculture, Energy, Government, Media & Entertainment, Construction), by Region, and Segment Forecasts, 2023–2030. Available online: https://www.grandviewresearch.com/industry-analysis/commercial-uav-market.
- Yao, H., Qin, R., and Chen, X. (2019). Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens., 11.
- Kovanič, Ľ., Topitzer, B., Peťovský, P., Blišťan, P., Gergeľová, M.B., and Blišťanová, M. (2023). Review of Photogrammetric and Lidar Applications of UAV. Appl. Sci., 13.
- Staniszewski, R., Messyasz, B., Dąbrowski, P., Burdziakowski, P., and Spychała, M. (2024). Recent Issues and Challenges in the Study of Inland Waters. Water, 16.
- Kwon, (2023), Chemosphere, 343, pp. 140198, 10.1016/j.chemosphere.2023.140198
- Szczurek, A., Gonstał, D., and Maciejewska, M. (2023). The Gas Sensing Drone with the Lowered and Lifted Measurement Platform. Sensors, 23.
- Fadhil, (2023), Eng. Technol. J., 195, pp. 1152
- Rohi, (2020), Heliyon, 6, pp. e03252, 10.1016/j.heliyon.2020.e03252
- de Castro, A.I., Shi, Y., Maja, J.M., and Peña, J.M. (2021). UAVs for Vegetation Monitoring: Overview and Recent Scientific Contributions. Remote Sens., 13.
- Su, S., Yan, L., Xie, H., Chen, C., Zhang, X., Gao, L., and Zhang, R. (2024). Multi-Level Hazard Detection Using a UAV-Mounted Multi-Sensor for Levee Inspection. Drones, 8.
- Jessin, J., Heinzlef, C., Long, N., and Serre, D. (2023). A Systematic Review of UAVs for Island Coastal Environment and Risk Monitoring: Towards a Resilience Assessment. Drones, 7.
- Akhloufi, M.A., Couturier, A., and Castro, N.A. (2021). Unmanned Aerial Vehicles for Wildland Fires: Sensing, Perception, Cooperation and Assistance. Drones, 5.
- De Keukelaere, L., Moelans, R., Knaeps, E., Sterckx, S., Reusen, I., De Munck, D., Simis, S.G.H., Constantinescu, A.M., Scrieciu, A., and Katsouras, G. (2023). Airborne Drones for Water Quality Mapping in Inland, Transitional and Coastal Waters—MapEO Water Data Processing and Validation. Remote Sens., 15.
- Zhao, (2022), Water Res., 225, pp. 119208, 10.1016/j.watres.2022.119208
- Bará, S., and Falchi, F. (2023). Artificial Light at Night: A Global Disruptor of the Night-Time Environment. Philos. Trans. R. Soc. B Biol. Sci., 378.
- Svechkina, (2020), Landsc. Ecol., 35, pp. 1725, 10.1007/s10980-020-01053-1
- Falcón, J., Torriglia, A., Attia, D., Viénot, F., Gronfier, C., Behar-Cohen, F., Martinsons, C., and Hicks, D. (2020). Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Front. Neurosci., 14.
- Hölker, F., Bolliger, J., Davies, T.W., Giavi, S., Jechow, A., Kalinkat, G., Longcore, T., Spoelstra, K., Tidau, S., and Visser, M.E. (2021). 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front. Ecol. Evol., 9.
- Cupertino, (2023), Biol. Rhythm. Res., 54, pp. 263, 10.1080/09291016.2022.2151763
- Posch, (2018), J. Quant. Spectrosc. Radiat. Transf., 205, pp. 278, 10.1016/j.jqsrt.2017.09.008
- Fiorentin, (2020), J. Quant. Spectrosc. Radiat. Transf., 255, pp. 107235, 10.1016/j.jqsrt.2020.107235
- Mander, (2023), Sustain. Cities Soc., 92, pp. 104465, 10.1016/j.scs.2023.104465
- Zielinska-Dabkowska, K.M., Szlachetko, K., and Bobkowska, K. (2021). An Impact Analysis of Artificial Light at Night (ALAN) on Bats. A Case Study of the Historic Monument and Natura 2000 Wisłoujście Fortress in Gdansk, Poland. Int. J. Environ. Res. Public Health, 18.
- Kurkela, (2022), Archit. Eng. Des. Manag., 18, pp. 56
- Bolliger, (2020), Basic Appl. Ecol., 47, pp. 44, 10.1016/j.baae.2020.06.003
- Bouroussis, (2020), J. Quant. Spectrosc. Radiat. Transf., 253, pp. 107155, 10.1016/j.jqsrt.2020.107155
- Rabaza, O., Molero-Mesa, E., Aznar-Dols, F., and Gómez-Lorente, D. (2018). Experimental Study of the Levels of Street Lighting Using Aerial Imagery and Energy Efficiency Calculation. Sustainability, 10.
- Li, (2020), Remote Sens. Environ., 247, pp. 111942, 10.1016/j.rse.2020.111942
- Aldao, (2021), Measurement, 174, pp. 109037, 10.1016/j.measurement.2021.109037
- Saputra, H., Ananda, F., Dinanta, G.P., Awaluddin, A., and Edward, E. (2023, January 21). Optimization of UAV-Fixed Wing for Topographic Three Dimensional (3D) Mapping in Mountain Areas. Proceedings of the 11th International Applied Business and Engineering Conference, Riau, Indonesia.
- Burdziakowski, P., and Bobkowska, K. (2021). UAV Photogrammetry under Poor Lighting Conditions—Accuracy Considerations. Sensors, 21.
- Massetti, L., Paterni, M., and Merlino, S. (2022). Monitoring Light Pollution with an Unmanned Aerial Vehicle: A Case Study Comparing RGB Images and Night Ground Brightness. Remote Sens., 14.
- Bhattarai, (2024), Drone Syst. Appl., 12, pp. 1, 10.1139/dsa-2023-0086
- Gabele, (2007), Digital Photography III, 6502, pp. 65020U, 10.1117/12.703205
- Tate, (2020), J. Appl. Remote Sens., 14, pp. 34528, 10.1117/1.JRS.14.034528
- (2024, August 01). Suport Micasense Radiometric Calibration Model for MicaSense Sensors. Available online: https://support.micasense.com/hc/en-us/articles/115000351194-Radiometric-Calibration-Model-for-MicaSense-Sensors.
- Daniels, L., Eeckhout, E., Wieme, J., Dejaegher, Y., Audenaert, K., and Maes, W.H. (2023). Identifying the Optimal Radiometric Calibration Method for UAV-Based Multispectral Imaging. Remote Sens., 15.
- Mamaghani, B., and Salvaggio, C. (2019). Multispectral Sensor Calibration and Characterization for SUAS Remote Sensing. Sensors, 19.
- Puschnig, (2022), Mon. Not. R. Astron. Soc., 518, pp. 4449, 10.1093/mnras/stac3003
- Bustamante-Calabria, M., de Miguel, A., Martín-Ruiz, S., Ortiz, J.-L., Vílchez, J.M., Pelegrina, A., García, A., Zamorano, J., Bennie, J., and Gaston, K.J. (2021). Effects of the COVID-19 Lockdown on Urban Light Emissions: Ground and Satellite Comparison. Remote Sens., 13.
- Ściężor, T. (2021). Effect of Street Lighting on the Urban and Rural Night-Time Radiance and the Brightness of the Night Sky. Remote Sens., 13.
- Schnitt, (2013), Sensors, 13, pp. 12166, 10.3390/s130912166
- Luo, (2023), Build. Environ., 238, pp. 110380, 10.1016/j.buildenv.2023.110380
- Burdziakowski, P. (2024). The Effect of Varying the Light Spectrum of a Scene on the Localisation of Photogrammetric Features. Remote Sens., 16.
- Ges, (2018), J. Quant. Spectrosc. Radiat. Transf., 210, pp. 91, 10.1016/j.jqsrt.2018.02.014
- Kunz, (2023), Quaest. Geogr., 42, pp. 5