A Multimodal Image Registration Method for UAV Visual Navigation Based on Feature Fusion and Transformers
-
He, Ruofei
1
- Long, Shuangxing 3
- Sun, Wei 3
- Liu, Hongjuan 4
- González-Aguilera, Diego ed. lit. 2
- 1 365th Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
-
2
Universidad de Salamanca
info
-
3
Xidian University
info
- 4 Xi’an ASN Technology Group Co., Ltd., Xi’an 710065, China
ISSN: 2504-446X
Year of publication: 2024
Volume: 8
Issue: 11
Pages: 651
Type: Article
More publications in: Drones
Funding information
Funders
-
National Natural Science Foundation of China
- 62173330
- 62371375
-
Shaanxi Key R&D Plan Key Industry Innovation Chain Project
- 2022ZDLGY03-01
-
China College Innovation Fund of Production, Education, and Research
- 2021ZYAO8004
-
Xi’an Science and Technology Plan Project
- 2022JH-RGZN-0039
Bibliographic References
- Flusser, (2003), Image Vis. Comput., 21, pp. 977, 10.1016/S0262-8856(03)00137-9
- Le Moigne, J., Netanyahu, N.S., and Eastman, R.D. (2011). Image Registration for Remote Sensing: Survey of Image Registration Methods, Cambridge University Press.
- Sui, (2015), IEEE Trans. Geosci. Remote Sens., 53, pp. 6058, 10.1109/TGRS.2015.2431498
- Chen, (2022), Med. Image Anal., 82, pp. 102615, 10.1016/j.media.2022.102615
- Zhang, X., Leng, C., Hong, Y., Pei, Z., Cheng, I., and Basu, A. (2021). Multimodal Remote Sensing Image Registration Methods and Advancements: A Survey. Remote Sens., 13.
- Detone, D., Malisiewicz, T., and Rabinovich, A. (2018, January 18–23). SuperPoint: Self-Supervised Interest Point Detection and Description. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA.
- Canny, J. (1987). A computational approach to edge detection. Read. Comput. Vis., 184–203.
- Lehureau, G., Tupin, F., Tison, C., Oller, G., and Petit, D. (2008, January 2–5). Registration of metric resolution SAR and Optical images in urban areas; proceedings of the Synthetic Aperture Radar (EUSAR). Proceedings of the 2008 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany.
- Beymer, D. (1996, January 18–20). Feature correspondence by interleaving shape and texture computations. Proceedings of the CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA.
- Vaswani, A. (2017, January 4–9). Attention is all you need. Advances in Neural Information Processing Systems. Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
- He, K., Zhang, X., Ren, S., and Sun, J. (2016, January 27–30). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA.
- Lowe, (2004), Int. J. Comput. Vis., 60, pp. 91, 10.1023/B:VISI.0000029664.99615.94
- Bay, H., Tuytelaars, T., and Gool, L.V. (2006, January 7–13). SURF: Speeded up robust features. Proceedings of the 9th European Conference on Computer Vision—Volume Part I, Graz, Austria.
- Ma, (2016), IEEE Geosci. Remote Sens. Lett., 14, pp. 3, 10.1109/LGRS.2016.2600858
- Wu, (2014), IEEE Geosci. Remote Sens. Letters, 12, pp. 43, 10.1109/LGRS.2014.2325970
- Ye, (2017), IEEE Trans. Geosci. Remote Sens., 55, pp. 2941, 10.1109/TGRS.2017.2656380
- Li, (2019), IEEE Trans. Image Process., 29, pp. 3296, 10.1109/TIP.2019.2959244
- Zhu, (2023), IEEE Trans. Geosci. Remote. Sens., 61, pp. 1
- Yi, K.M., Trulls, E., Lepetit, V., and Fua, P. (2016). LIFT: Learned Invariant Feature Transform, Springer International Publishing.
- Ono, Y., Trulls, E., Fua, P., and Yi, K.M. (2018). LF-Net: Learning Local Features from Images, Curran Associates Inc.
- Revaud, J., De Souza, C., Humenberger, M., and Weinzaepfel, P. (2019, January 8–14). R2D2: Repeatable and Reliable Detector and Descriptor. Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada.
- Luo, Z., Zhou, L., Bai, X., Chen, H., Zhang, J., Yao, Y., Li, S., Fang, T., and Quan, L. (2020, January 13–19). ASLFeat: Learning Local Features of Accurate Shape and Localization. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA.
- Li, (2022), IEEE Trans. Geosci. Remote Sens., 60, pp. 1
- Deng, (2023), IEEE Trans. Image Process., 32, pp. 591, 10.1109/TIP.2022.3231135
- Gao, (2023), IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 16, pp. 10132, 10.1109/JSTARS.2023.3326959
- Wang, X., Jabri, A., and Efros, A.A. (2019, January 16–17). Learning Correspondence from the Cycle-Consistency of Time. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA.
- Ma, J., Zhao, J., Jiang, J., Zhou, H., and Guo, X. (2017, January 19–25). Locality Preserving Matching. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia.
- Li, Z., and Snavely, N. (2018, January 18–23). MegaDepth: Learning Single-View Depth Prediction from Internet Photos. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA.
- Yao, (2022), IEEE Trans. Image Process., 31, pp. 2584, 10.1109/TIP.2022.3157450
- Balntas, V., Lenc, K., Vedaldi, A., and Mikolajczyk, K. (2017, January 21–26). HPatches: A benchmark and evaluation of handcrafted andlearned local descriptors. Proceedings of the IEEE Conference on Computer Vision and PatternRecognition, Honolulu, HI, USA.
- Fan, Z., Liu, Y., Liu, Y., Zhang, L., Zhang, J., Sun, Y., and Ai, H. (2022). 3MRS: An Effective Coarse-to-Fine Matching Method for Multimodal Remote Sensing Imagery. Remote Sens., 14.