Nitro-fatty acids modulate germination onset through S-nitrosothiol metabolism
-
Mata-Pérez, Capilla
12
-
Begara-Morales, Juan C
1
- Padilla, María N 1
-
Chaki, Mounira
1
-
Sánchez-Calvo, Beatriz
33
-
Carreras, Alfonso
1
-
Aranda-Caño, Lorena
1
-
Melguizo, Manuel
1
-
Valderrama, Raquel
1
-
Sánchez-Vicente, Inmaculada
2
-
Lorenzo, Óscar
2
-
Barroso, Juan B
1
-
1
Universidad de Jaén
info
-
2
Universidad de Salamanca
info
-
3
Universidad de la República
info
ISSN: 0032-0889, 1532-2548
Year of publication: 2025
Volume: 197
Issue: 2
Type: Article
More publications in: Plant Physiology
Related Projects
Abstract
Nitro-fatty acids (NO2-FAs) have emerged as key components of nitric oxide (NO) signaling in eukaryotes. We previously described how nitro-linolenic acid (NO2-Ln), the major NO2-FA detected in plants, regulates S-nitrosoglutathione (GSNO) levels in Arabidopsis (Arabidopsis thaliana). However, the underlying molecular mechanisms remain undefined. Here, we used a combination of physiological, biochemical, and molecular approaches to provide evidence that NO2-Ln modulates S-nitrosothiol (SNO) content through S-nitrosylation of S-nitrosoglutathione reductase1 (GSNOR1) and its impact on germination onset. The aer mutant (a knockout mutant of the alkenal reductase enzyme; AER) exhibits higher NO2-Ln content and lower GSNOR1 transcript levels, reflected by higher SNO content and S-nitrosylated proteins. Given its capacity to release NO, NO2-Ln mediates the S-nitrosylation of GSNOR1, demonstrating that NO2-FAs can indirectly modulate total SNO content in plants. Moreover, the ectopic application of NO2-Ln to dormant seeds enhances germination success similarly to the aer germination rate, which is mediated by the degradation of master regulator ABSCISIC ACID INSENSITIVE 5 (ABI5). Our results establish that NO2-FAs regulate plant development through NO and SNO metabolism and reveal a role of NO2-FAs in plant physiology.
Funding information
Funders
- ERDF
-
Spanish Ministry of Science, Innovation and Universities
- PID2022-142973NB-I00
- PID2020-117774GA-I00
- Junta de Andalucía
- Recalibration of the Spanish University System
Bibliographic References
- Albertos, (2015), Nat Commun., 6, pp. 8669, 10.1038/ncomms9669
- Aranda-Caño, (2019), Plants, 8, pp. 82, 10.3390/plants8040082
- Aranda-Caño, (2022), Antioxidants, 11, pp. 1869, 10.3390/antiox11101869
- Aranda-Caño, (2022), Antioxidants, 11, pp. 972, 10.3390/antiox11050972
- Baker, (2005), J Biol Chem., 280, pp. 42464, 10.1074/jbc.M504212200
- Barroso, (2006), J Exp Bot., 57, pp. 1785, 10.1093/jxb/erj175
- Begara-Morales, (2013), J Exp Bot., 64, pp. 1121, 10.1093/jxb/ert006
- Begara-Morales, (2019), J Exp Bot., 70, pp. 4429, 10.1093/jxb/erz197
- Begara-Morales, (2018), J Exp Bot., 69, pp. 3425, 10.1093/jxb/ery072
- Begara-Morales, (2021), J Exp Bot., 72, pp. 917, 10.1093/jxb/eraa517
- Begara-Morales, (2014), J Exp Bot., 65, pp. 527, 10.1093/jxb/ert396
- Beligni, (2000), Planta, 210, pp. 215, 10.1007/PL00008128
- Bethke, (2004), Planta, 219, pp. 847, 10.1007/s00425-004-1282-x
- Bethke, (2007), Plant Physiol., 143, pp. 1173, 10.1104/pp.106.093435
- Bethke, (2006), J Exp Bot., 57, pp. 517, 10.1093/jxb/erj060
- Camejo, (2013), J Proteomics., 79, pp. 87, 10.1016/j.jprot.2012.12.003
- Chaki, (2013), Nitric Oxide, 29, pp. 30, 10.1016/j.niox.2012.12.003
- Chaki, (2009), Plant Cell Physiol., 50, pp. 265, 10.1093/pcp/pcn196
- Chaki, (2011), Plant Cell Environ., 34, pp. 1803, 10.1111/j.1365-3040.2011.02376.x
- Chaki, (2011), J Exp Bot., 62, pp. 1803, 10.1093/jxb/erq358
- Chaki, (2009), J Exp Bot., 60, pp. 4221, 10.1093/jxb/erp263
- Corpas, (2008), Plant Cell Physiol., 49, pp. 1711, 10.1093/pcp/pcn144
- Cui, (2006), J Biol Chem., 281, pp. 35686, 10.1074/jbc.M603357200
- Delledonne, (1998), Nature, 394, pp. 585, 10.1038/29087
- Di Fino, (2021), Planta, 254, pp. 1, 10.1007/s00425-021-03777-z
- Durner, (1998), Proc Natl Acad Sci U S A., 95, pp. 10328, 10.1073/pnas.95.17.10328
- Faine, (2010), J Nutr Biochem., 21, pp. 125, 10.1016/j.jnutbio.2008.12.004
- Fares, (2011), Biochem Biophys Res Commun., 416, pp. 331, 10.1016/j.bbrc.2011.11.036
- Feechan, (2005), Proc Natl Acad Sci U S A., 102, pp. 8054, 10.1073/pnas.0501456102
- Ferrarini, (2008), Mol Plant Microbe Interact., 21, pp. 781, 10.1094/MPMI-21-6-0781
- Freeman, (2008), J Biol Chem., 283, pp. 15515, 10.1074/jbc.R800004200
- Frungillo, (2014), Nat Commun., 5, pp. 5401, 10.1038/ncomms6401
- Garcia-Mata, (2007), Nitric Oxide, 17, pp. 143, 10.1016/j.niox.2007.08.001
- Garcı́a-Mata, (2001), Plant Physiol., 126, pp. 1196, 10.1104/pp.126.3.1196
- Geisler, (2012), Biochim Biophys Acta, 1820, pp. 777, 10.1016/j.bbagen.2011.06.014
- Gibbs, (2014), Mol Cell., 53, pp. 369, 10.1016/j.molcel.2013.12.020
- Gorczynski, (2007), Bioorg Med Chem Lett., 17, pp. 2013, 10.1016/j.bmcl.2007.01.016
- Guerra, (2016), Biochemistry, 55, pp. 2452, 10.1021/acs.biochem.5b01373
- Gupta, (2020), New Phytol., 227, pp. 1319, 10.1111/nph.16622
- Hess, (2012), J Biol Chem., 287, pp. 4411, 10.1074/jbc.R111.285742
- Jacobs, (2010), Acc Chem Res., 43, pp. 673, 10.1021/ar900286y
- Jaffrey, (2001), Sci Signal., 2001, pp. pl1, 10.1126/stke.2001.86.pl1
- Kansanen, (2009), J Biol Chem., 284, pp. 33233, 10.1074/jbc.M109.064873
- Kato, (2012), Physiol Plant., 148, pp. 371, 10.1111/j.1399-3054.2012.01684.x
- Kneeshaw, (2014), Mol Cell., 56, pp. 153, 10.1016/j.molcel.2014.08.003
- Koutoulogenis, (2021), Molecules, 26, pp. 7536, 10.3390/molecules26247536
- Kwon, (2012), Planta, 236, pp. 887, 10.1007/s00425-012-1697-8
- Lee, (2008), Plant Cell, 20, pp. 786, 10.1105/tpc.107.052647
- Lim, (2002), Proc Natl Acad Sci U S A., 99, pp. 15941, 10.1073/pnas.232409599
- Lima, (2005), Free Radic Biol Med., 39, pp. 532, 10.1016/j.freeradbiomed.2005.04.005
- Lindermayr, (2005), Plant Physiol., 137, pp. 921, 10.1104/pp.104.058719
- Lindermayr, (2010), Plant Cell, 22, pp. 2894, 10.1105/tpc.109.066464
- Lopez-Molina, (2001), Proc Natl Acad Sci U S A., 98, pp. 4782, 10.1073/pnas.081594298
- Lozano-Juste, (2010), Plant Physiol., 152, pp. 891, 10.1104/pp.109.148023
- Mata-Pérez, (2020), Front Plant Sci., 11, pp. 962, 10.3389/fpls.2020.00962
- Mata-Pérez, (2016), Nitric Oxide, 57, pp. 57, 10.1016/j.niox.2016.05.003
- Mata-Pérez, (2016), Plant Signal Behav., 11, pp. e1154255, 10.1080/15592324.2016.1154255
- Mata-Pérez, (2016), Plant Physiol., 170, pp. 686, 10.1104/pp.15.01671
- Mata-Pérez, (2017), Redox Biol., 11, pp. 554, 10.1016/j.redox.2017.01.002
- Mata-Pérez, (2018), Plant Sci., 279, pp. 27, 10.1016/j.plantsci.2018.05.001
- Mi, (2021), Nucleic Acids Res., 49, pp. D394, 10.1093/nar/gkaa1106
- Nakamura, (2001), Plant J, 26, pp. 627, 10.1046/j.1365-313x.2001.01069.x
- Nambara, (2010), Seed Sci Res., 20, pp. 55, 10.1017/S0960258510000012
- Niu, (2019), Int J Mol Sci, 20, pp. 5363, 10.3390/ijms20215363
- Padilla, (2017), Nitric Oxide, 68, pp. 14, 10.1016/j.niox.2016.12.009
- Radi, (2012), Acc Chem Res., 46, pp. 550, 10.1021/ar300234c
- Romero-Puertas, (2008), Proteomics, 8, pp. 1459, 10.1002/pmic.200700536
- Rustérucci, (2007), Plant Physiol., 143, pp. 1282, 10.1104/pp.106.091686
- Sánchez-Vicente, (2024), Cell Rep, 43, pp. 114091, 10.1016/j.celrep.2024.114091
- Schopfer, (2005), J Biol Chem., 280, pp. 19289, 10.1074/jbc.M414689200
- Schopfer, (2011), Chem Rev., 111, pp. 5997, 10.1021/cr200131e
- Schopfer, (2010), J Biol Chem., 285, pp. 12321, 10.1074/jbc.M109.091512
- Tada, (2008), Science, 321, pp. 952, 10.1126/science.1156970
- Tichá, (2017), Biochem Biophys Res Commun., 494, pp. 27, 10.1016/j.bbrc.2017.10.090
- Tsikas, (2009), Lipids, 44, pp. 855, 10.1007/s11745-009-3332-4
- Valderrama, (2007), FEBS Lett., 581, pp. 453, 10.1016/j.febslet.2007.01.006
- Vitturi, (2013), J Biol Chem., 288, pp. 25626, 10.1074/jbc.M113.486282
- Vollár, (2020), Plants, 9, pp. 406, 10.3390/plants9030406
- Zhan, (2018), Mol Cell., 71, pp. 142, 10.1016/j.molcel.2018.05.024