Nitro-fatty acids modulate germination onset through S-nitrosothiol metabolism

  1. Mata-Pérez, Capilla 12
  2. Begara-Morales, Juan C 1
  3. Padilla, María N 1
  4. Chaki, Mounira 1
  5. Sánchez-Calvo, Beatriz 33
  6. Carreras, Alfonso 1
  7. Aranda-Caño, Lorena 1
  8. Melguizo, Manuel 1
  9. Valderrama, Raquel 1
  10. Sánchez-Vicente, Inmaculada 2
  11. Lorenzo, Óscar 2
  12. Barroso, Juan B 1
  1. 1 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

  2. 2 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  3. 3 Universidad de la República
    info

    Universidad de la República

    Montevideo, Uruguay

    ROR https://ror.org/030bbe882

Journal:
Plant Physiology

ISSN: 0032-0889 1532-2548

Year of publication: 2025

Volume: 197

Issue: 2

Type: Article

DOI: 10.1093/PLPHYS/KIAF038 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Plant Physiology

Abstract

Nitro-fatty acids (NO2-FAs) have emerged as key components of nitric oxide (NO) signaling in eukaryotes. We previously described how nitro-linolenic acid (NO2-Ln), the major NO2-FA detected in plants, regulates S-nitrosoglutathione (GSNO) levels in Arabidopsis (Arabidopsis thaliana). However, the underlying molecular mechanisms remain undefined. Here, we used a combination of physiological, biochemical, and molecular approaches to provide evidence that NO2-Ln modulates S-nitrosothiol (SNO) content through S-nitrosylation of S-nitrosoglutathione reductase1 (GSNOR1) and its impact on germination onset. The aer mutant (a knockout mutant of the alkenal reductase enzyme; AER) exhibits higher NO2-Ln content and lower GSNOR1 transcript levels, reflected by higher SNO content and S-nitrosylated proteins. Given its capacity to release NO, NO2-Ln mediates the S-nitrosylation of GSNOR1, demonstrating that NO2-FAs can indirectly modulate total SNO content in plants. Moreover, the ectopic application of NO2-Ln to dormant seeds enhances germination success similarly to the aer germination rate, which is mediated by the degradation of master regulator ABSCISIC ACID INSENSITIVE 5 (ABI5). Our results establish that NO2-FAs regulate plant development through NO and SNO metabolism and reveal a role of NO2-FAs in plant physiology.

Funding information

Funders

  • ERDF
  • Spanish Ministry of Science, Innovation and Universities
    • PID2022-142973NB-I00
    • PID2020-117774GA-I00
  • Junta de Andalucía
  • Recalibration of the Spanish University System

Bibliographic References

  • Albertos, (2015), Nat Commun., 6, pp. 8669, 10.1038/ncomms9669
  • Aranda-Caño, (2019), Plants, 8, pp. 82, 10.3390/plants8040082
  • Aranda-Caño, (2022), Antioxidants, 11, pp. 1869, 10.3390/antiox11101869
  • Aranda-Caño, (2022), Antioxidants, 11, pp. 972, 10.3390/antiox11050972
  • Baker, (2005), J Biol Chem., 280, pp. 42464, 10.1074/jbc.M504212200
  • Barroso, (2006), J Exp Bot., 57, pp. 1785, 10.1093/jxb/erj175
  • Begara-Morales, (2013), J Exp Bot., 64, pp. 1121, 10.1093/jxb/ert006
  • Begara-Morales, (2019), J Exp Bot., 70, pp. 4429, 10.1093/jxb/erz197
  • Begara-Morales, (2018), J Exp Bot., 69, pp. 3425, 10.1093/jxb/ery072
  • Begara-Morales, (2021), J Exp Bot., 72, pp. 917, 10.1093/jxb/eraa517
  • Begara-Morales, (2014), J Exp Bot., 65, pp. 527, 10.1093/jxb/ert396
  • Beligni, (2000), Planta, 210, pp. 215, 10.1007/PL00008128
  • Bethke, (2004), Planta, 219, pp. 847, 10.1007/s00425-004-1282-x
  • Bethke, (2007), Plant Physiol., 143, pp. 1173, 10.1104/pp.106.093435
  • Bethke, (2006), J Exp Bot., 57, pp. 517, 10.1093/jxb/erj060
  • Camejo, (2013), J Proteomics., 79, pp. 87, 10.1016/j.jprot.2012.12.003
  • Chaki, (2013), Nitric Oxide, 29, pp. 30, 10.1016/j.niox.2012.12.003
  • Chaki, (2009), Plant Cell Physiol., 50, pp. 265, 10.1093/pcp/pcn196
  • Chaki, (2011), Plant Cell Environ., 34, pp. 1803, 10.1111/j.1365-3040.2011.02376.x
  • Chaki, (2011), J Exp Bot., 62, pp. 1803, 10.1093/jxb/erq358
  • Chaki, (2009), J Exp Bot., 60, pp. 4221, 10.1093/jxb/erp263
  • Corpas, (2008), Plant Cell Physiol., 49, pp. 1711, 10.1093/pcp/pcn144
  • Cui, (2006), J Biol Chem., 281, pp. 35686, 10.1074/jbc.M603357200
  • Delledonne, (1998), Nature, 394, pp. 585, 10.1038/29087
  • Di Fino, (2021), Planta, 254, pp. 1, 10.1007/s00425-021-03777-z
  • Durner, (1998), Proc Natl Acad Sci U S A., 95, pp. 10328, 10.1073/pnas.95.17.10328
  • Faine, (2010), J Nutr Biochem., 21, pp. 125, 10.1016/j.jnutbio.2008.12.004
  • Fares, (2011), Biochem Biophys Res Commun., 416, pp. 331, 10.1016/j.bbrc.2011.11.036
  • Feechan, (2005), Proc Natl Acad Sci U S A., 102, pp. 8054, 10.1073/pnas.0501456102
  • Ferrarini, (2008), Mol Plant Microbe Interact., 21, pp. 781, 10.1094/MPMI-21-6-0781
  • Freeman, (2008), J Biol Chem., 283, pp. 15515, 10.1074/jbc.R800004200
  • Frungillo, (2014), Nat Commun., 5, pp. 5401, 10.1038/ncomms6401
  • Garcia-Mata, (2007), Nitric Oxide, 17, pp. 143, 10.1016/j.niox.2007.08.001
  • Garcı́a-Mata, (2001), Plant Physiol., 126, pp. 1196, 10.1104/pp.126.3.1196
  • Geisler, (2012), Biochim Biophys Acta, 1820, pp. 777, 10.1016/j.bbagen.2011.06.014
  • Gibbs, (2014), Mol Cell., 53, pp. 369, 10.1016/j.molcel.2013.12.020
  • Gorczynski, (2007), Bioorg Med Chem Lett., 17, pp. 2013, 10.1016/j.bmcl.2007.01.016
  • Guerra, (2016), Biochemistry, 55, pp. 2452, 10.1021/acs.biochem.5b01373
  • Gupta, (2020), New Phytol., 227, pp. 1319, 10.1111/nph.16622
  • Hess, (2012), J Biol Chem., 287, pp. 4411, 10.1074/jbc.R111.285742
  • Jacobs, (2010), Acc Chem Res., 43, pp. 673, 10.1021/ar900286y
  • Jaffrey, (2001), Sci Signal., 2001, pp. pl1, 10.1126/stke.2001.86.pl1
  • Kansanen, (2009), J Biol Chem., 284, pp. 33233, 10.1074/jbc.M109.064873
  • Kato, (2012), Physiol Plant., 148, pp. 371, 10.1111/j.1399-3054.2012.01684.x
  • Kneeshaw, (2014), Mol Cell., 56, pp. 153, 10.1016/j.molcel.2014.08.003
  • Koutoulogenis, (2021), Molecules, 26, pp. 7536, 10.3390/molecules26247536
  • Kwon, (2012), Planta, 236, pp. 887, 10.1007/s00425-012-1697-8
  • Lee, (2008), Plant Cell, 20, pp. 786, 10.1105/tpc.107.052647
  • Lim, (2002), Proc Natl Acad Sci U S A., 99, pp. 15941, 10.1073/pnas.232409599
  • Lima, (2005), Free Radic Biol Med., 39, pp. 532, 10.1016/j.freeradbiomed.2005.04.005
  • Lindermayr, (2005), Plant Physiol., 137, pp. 921, 10.1104/pp.104.058719
  • Lindermayr, (2010), Plant Cell, 22, pp. 2894, 10.1105/tpc.109.066464
  • Lopez-Molina, (2001), Proc Natl Acad Sci U S A., 98, pp. 4782, 10.1073/pnas.081594298
  • Lozano-Juste, (2010), Plant Physiol., 152, pp. 891, 10.1104/pp.109.148023
  • Mata-Pérez, (2020), Front Plant Sci., 11, pp. 962, 10.3389/fpls.2020.00962
  • Mata-Pérez, (2016), Nitric Oxide, 57, pp. 57, 10.1016/j.niox.2016.05.003
  • Mata-Pérez, (2016), Plant Signal Behav., 11, pp. e1154255, 10.1080/15592324.2016.1154255
  • Mata-Pérez, (2016), Plant Physiol., 170, pp. 686, 10.1104/pp.15.01671
  • Mata-Pérez, (2017), Redox Biol., 11, pp. 554, 10.1016/j.redox.2017.01.002
  • Mata-Pérez, (2018), Plant Sci., 279, pp. 27, 10.1016/j.plantsci.2018.05.001
  • Mi, (2021), Nucleic Acids Res., 49, pp. D394, 10.1093/nar/gkaa1106
  • Nakamura, (2001), Plant J, 26, pp. 627, 10.1046/j.1365-313x.2001.01069.x
  • Nambara, (2010), Seed Sci Res., 20, pp. 55, 10.1017/S0960258510000012
  • Niu, (2019), Int J Mol Sci, 20, pp. 5363, 10.3390/ijms20215363
  • Padilla, (2017), Nitric Oxide, 68, pp. 14, 10.1016/j.niox.2016.12.009
  • Radi, (2012), Acc Chem Res., 46, pp. 550, 10.1021/ar300234c
  • Romero-Puertas, (2008), Proteomics, 8, pp. 1459, 10.1002/pmic.200700536
  • Rustérucci, (2007), Plant Physiol., 143, pp. 1282, 10.1104/pp.106.091686
  • Sánchez-Vicente, (2024), Cell Rep, 43, pp. 114091, 10.1016/j.celrep.2024.114091
  • Schopfer, (2005), J Biol Chem., 280, pp. 19289, 10.1074/jbc.M414689200
  • Schopfer, (2011), Chem Rev., 111, pp. 5997, 10.1021/cr200131e
  • Schopfer, (2010), J Biol Chem., 285, pp. 12321, 10.1074/jbc.M109.091512
  • Tada, (2008), Science, 321, pp. 952, 10.1126/science.1156970
  • Tichá, (2017), Biochem Biophys Res Commun., 494, pp. 27, 10.1016/j.bbrc.2017.10.090
  • Tsikas, (2009), Lipids, 44, pp. 855, 10.1007/s11745-009-3332-4
  • Valderrama, (2007), FEBS Lett., 581, pp. 453, 10.1016/j.febslet.2007.01.006
  • Vitturi, (2013), J Biol Chem., 288, pp. 25626, 10.1074/jbc.M113.486282
  • Vollár, (2020), Plants, 9, pp. 406, 10.3390/plants9030406
  • Zhan, (2018), Mol Cell., 71, pp. 142, 10.1016/j.molcel.2018.05.024