Estudio de pruebas de uniformidad basadas en la divergencia funcional
- Ramón Ardanuy Albajar Director
Defence university: Universidad de Salamanca
Year of defence: 1997
- Vicente Quesada Paloma Chair
- Quintín Martín Martín Secretary
- José María Ruiz Gómez Committee member
- Mariano José Valderrama Bonnet Committee member
- Francisco Javier Villarroel Rodríguez Committee member
Type: Thesis
Abstract
Uno de los principales problemas en el tema de bondad de ajuste consiste en contrastar la normalidad de una m,a.S.. Puesto que las pruebas de normalidad multivariante pueden reducirse a pruebas de uniformidad en el intervalo (0,1), se ha realizado un estudio de las pruebas de uniformidad que existen, comprobando que la mayoría presentan una potencia muy baja para ciertas distribuciones alternativas a la distribución uniforme en el intervalo (0,1). Además se han generalizado todas estas pruebas construyendo tablas de cuantiles para realizar contrastes de uniformidad en intervalos de la forma (a,0); (0,b) y (a,b) con extremos a y b desconocidos. Debido a las deficiencias de dichas pruebas de uniformidad, se construye, mediante la simetrización de la divergencia funcional de Kullback-Leibler, el estadístico j y sus correspondientes cuantiles, para realizar pruebas de uniformidad en cualquier tipo de intervalo real con extremos desconocidos, comprobando que para muestras pequeñas es el mas potente, y que para muestras intermedias y grandes es equiparable al mas potente de los que ya existían. Por ultimo, con el estadístico j, se han construido pruebas para detectar distribuciones truncadas.