Modelos de clases latentes en tablas poco ocupadasuna contribución basada en bootstrap

  1. Araya Alpízar, Carlomagno
unter der Leitung von:
  1. Rosa Sepúlveda Correa Doktormutter
  2. Purificación Galindo-Villardón Doktormutter

Universität der Verteidigung: Universidad de Salamanca

Fecha de defensa: 19 von Februar von 2011

Gericht:
  1. Miguel Ángel Fajardo Caldera Präsident/in
  2. Ana María Martín Casado Sekretärin
  3. José Luis Vicente Villardón Vocal
  4. Valter Martins Vairinhos Vocal
  5. Eugenia Maria Maia Ferreira Castela Vocal
Fachbereiche:
  1. ESTADÍSTICA

Art: Dissertation

Zusammenfassung

[ES] El contexto general de esta investigación, se enmarca en el estudio del problema que puede surgir en la aplicación de los Modelos de Clases Latentes, cuando se incumplen las propiedades asintóticas de los estadísticos de bondad de ajuste, situación que se presenta en las tablas de contingencia poco ocupadas, conocidas como “sparse data”. Los datos “sparse” se presentan a menudo en conjuntos de datos pequeños o cuando el número posible de patrones de respuesta es grande, ya que la mayoría de los patrones de respuestas tienen frecuencias cero o tienden a cero. Se han propuesto algunas soluciones para hacer frente al problema. Una de ellas es encontrar el modelo de clases latentes más apropiado utilizando el método Bootstrap Paramétrico. Básicamente, el método consiste en simular conjuntos de datos adicionales (o remuestras), utilizando una distribución de probabilidad conocida.