Procesos de precipitación mineral bioinducidos en sistemas kársticos subterráneosbreve revisión y nuevas tendencias

  1. Sánchez Moral, Sergio
  2. González, Juan M.
  3. Cañaveras, Juan Carlos
  4. Cuezva Robleño, Soledad
  5. Lario, Javier
  6. Cardell, C.
  7. Elez Villar, Javier
  8. Luque Ripoll, Luis de
  9. Saiz-Jiménez, Cesáreo
Revista:
Estudios geológicos

ISSN: 0367-0449

Año de publicación: 2006

Volumen: 62

Número: 1

Páginas: 43-52

Tipo: Artículo

DOI: 10.3989/EGEOL.066215 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Estudios geológicos

Resumen

Los microorganismos, en particular las bacterias, habitan en todos los ambientes posibles de la biosfera incluidos los ambientes subterráneos. Desempeñan un papel importante en procesos geológicos tales como la precipitación y disolución mineral, e influyen notablemente sobre los ciclos biogeoquímicos de diferentes elementos. Hasta este momento, son relativamente pocos los estudios orientados a conocer el papel activo de los microorganismos, especialmente las bacterias, en la formación de espeleotemas, de manera que la implicación de la actividad microbiana en la precipitación y disolución mineral en ambientes kársticos es un tema aún sin resolver en geomicrobiología. Actualmente, no está del todo aclarada cuál es la interrelación entre los microorganismos y las fábricas minerales, ni el papel que juegan los microorganismos en la precipitación de carbonatos. Las cuevas son ambientes protegidos donde las fábricas microbianas pueden preservarse sin sufrir modificaciones diagenéticas importantes o destrucción, ofreciendo, por ello, un excelente entorno para estudiar los procesos de biomineralización (desde los propios microorganismos activos a sus depósitos minerales). Las nuevas tendencias en geomicrobiología se basan en la conjunción de diferentes metodologías (microclima, petrología, geoquímica, hidroquímica, microbiología, biología molecular) con un objetivo común: 1) determinar el papel de las diferentes comunidades microbianas que habitan los ambientes subterráneos en los procesos de transformación mineral; 2) identificar las propiedades físicas y químicas de las fases cristalinas bioinducidas, y 3) determinar las condiciones ambientales y las propiedades composicionales y texturales de los soportes rocosos naturales (biorreceptividad) que favorecen o inhiben el desarrollo de las comunidades microbianas.

Referencias bibliográficas

  • Albertano P., Moscone D., Palleschi G., Hermosin B., Saiz-Jiménez C., Sánchez-Moral S., Hernández-Marine M., Urzì C., Groth I., Schroeckh V., Saarela M., Mattila- Sandholm T., Gallon J. R., Graziottin F., Bisconti F., Giuliani R. (2003). Cyanobacteria attack rocks (CATS): Control and preventive strategies to avoid damage caused by cyanobacteria and associated microorganisms in Roman Hypogean Monuments. In: Molecular Biology and Cultural Heritage (C. Saiz-Jiménez, edit.). Swets & Zeitlinger, Lisse (NL), 151-162.
  • Ascaso, C. y Wierzchos, J. (2003). The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiol. J., 20: 439-450. doi:10.1080/713851127
  • Awramik, S. M. (1992). The oldest records of photosynthesis. Photosynthesis Res., 33: 75-89. doi:10.1007/BF00039172
  • Banfield, J. F. y Nealson, K. H. (1997). Geomicrobiol. Rev. Mineral., 35: 448.
  • Barton, H. A., Taylor, M. R. y Pace, N. R. (2004). Molecular Phylogenetic Analysis of a Bacterial Community in an Oligotrophic Cave Environment. Geomicrobiol. J., 21: 11-20. doi:10.1080/01490450490253428
  • Baskar, S., Baskar, R., Mauclaire, L., McKenzie, J. A. (2006). Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci. India, 90: 58-64.
  • Blair, N., Leu, A., Muñoz, E., Olsen, J., Kwong, E. y Des Marais, D. (1985). Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl. Environ. Microb., 50: 996-1001.
  • Bolliger, C., Schönholzer, F., Schroth, M. H., Hahn, D., Bernasconi, S. y Zeyer, J. (2000). Characterizing intrinsic bioremediation in a petroleum hydrocarboncontaminated aquifer by combined chemical, isotopic and biological analyses. Bioremed. J., 4: 359-371. doi:10.1080/10889860091114301
  • Boquet, E., Bordonat, A. y Ramos Cormenzana, A. (1973). Production of calcite crystals by soil bacteria is a general phenomenon. Nature, 246: 527-528. doi:10.1038/246527a0
  • Borsato, A., Frisia, S., Jones, B. y Van der Borg, K. (2000). Calcite moonmilk: cristal morphology and environment of formation in caves in the Italian Alps. J. Sedim. Res., 70: 1179-1190. doi:10.1306/032300701171
  • Brock, T. D. y Madigan, M. T. (1991). Biology of microoganisms. 6th edition. Prentice Hall, Englewood Cliffs, New Jersey, 991 págs.
  • Buzolyova, L. S. y Somov, G. P. (1999). Autotrophic assimilation of CO2 and C1-compounds by pathogenic bacteria. Biochemistry (Moscow), 64: 1146-1149.
  • Cacchio, P., Contento, R., Ercole, C., Cappuccio, G., Preite-Martínez, M. y Lepidi, A. (2004). Involvement of Microorganisms in the Formation of Carbonate Speleothems in the Cervo Cave (L’Aquila-Italy). Geomicrobiol. J., 21: 497-509. doi:10.1080/01490450490888109
  • Cañaveras, J. C., Sánchez-Moral, S., Sanz Rubio, E., Bedoya, J., Soler, V., Groth, I., Schumann, P., Laiz, L., González, I. y Saiz-Jiménez, C. (1999). Microbial communities associated to hydromagnesite and needle fiber aragonite deposits in a karstic cave (Altamira, Northern Spain). Geomicrobiol. J., 16: 9-25. doi:10.1080/014904599270712
  • Cañaveras, J. C., Sánchez-Moral, S., Soler, V. y Saiz- Jiménez, C. (2001). Microorganisms and Microbially Induced Fabrics in Cave Walls. Geomicrobiol. J., 18: 223-240. doi:10.1080/01490450152467769
  • Cañaveras, J. C., Cuezva, S., Sánchez-Moral, S., Lario, J., Laiz, L., González, J. M. y Saiz-Jiménez, C. (2006). On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften, 93: 27-32. doi:10.1007/s00114-005-0052-3
  • Castanier, S., Le Métayer-Levrel, G. y Perthuisot J.-P. (1999). Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sedim. Geol., 126: 9-23. doi:10.1016/S0037-0738(99)00028-7
  • Castanier, S., Le M’etayer-Levrel, G., Perthuisot, J. P. Bacterial roles in the precipitation of carbonate minerals. (2000). In: Microbial Sediments (R. E. Riding, R. E. y S. M. Awramik, edit.) Springer-Verlag, Heidelberg, 32-39.
  • Coates, J. D., Ellis, D. J., Gaw, C. V. y Lovley, D. R. (1999). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Bacteriol., 49: 1615-1622.
  • Cuezva, S., Cañaveras, J. C., González, R., Lario, J., Luque, L., Saiz, C., Sánchez-Moral, S. y Soler, V. (2003). Origen bacteriano de espelotemas tipo moonmilk en ambiente kárstico (Cueva de Altamira, España). Estudios Geol., 59: 145-157.
  • Dove, P. M., De Yoreo, J. J. y Weiner S. (edit.) (2003). Biomineralization. Reviews in Mineralogy & Geochemistry, 54. Geochemical Society, St. Louis, MO, and Mineralogical Society of America, Washington, 381 págs.
  • Ehrlich, H. L. (1998). Geomicrobiology.: its significance for geology. Earth-Sci. Rev., 45: 45-60. doi:10.1016/S0012-8252(98)00034-8
  • Ehrlich, H. L. (2002). Geomicrobiology., 4th ed. Marcel Dekker, New York, 768 págs.
  • Engel, A. S., Porter, M. I., Kinkle, B. K. y Kane, T. C. (2001). Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol. J., 18: 259-274. doi:10.1080/01490450152467787
  • Forti, P. (2001). Biogenic speleothems: an overwiew. Int. J. Speleol., 30: 39-56.
  • González, J. M. y Saiz-Jiménez, C. (2004). Microbial activity in biodeteriorated monuments as studied by denaturing gradient gel electrophoresis. J. of Separation Science, 27: 174-180. doi:10.1002/jssc.200301609
  • González, J. M. y Saiz-Jiménez, C. (2005). Application of molecular nucleic acid-based techniques for the study of microbial communities in monuments. Int. Microbiol., 8: 189-194.
  • González, J. M., Portillo, M. C., Saiz-Jiménez, C. (2006). Metabolically active Crenarchaeota in Altamira Cave. Naturwissenschaften, 93: 42-45. doi:10.1007/s00114-005-0060-3
  • Guillitte, O. (1995). Bioreceptivity: a new concept for building ecology studies. Sci. Total Environ., 167: 215-220. doi:10.1016/0048-9697(95)04582-L
  • Holmes, A. J., Tujula, N. A., Holley, M., Contos, A., James, J. M., Rogers, P., Gillings, M. R. (2001). Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ. Microbiol., 3: 256-264. doi:10.1046/j.1462-2920.2001.00187.x
  • Hose, L. D., Palmer, A. N., Palmer, M. V., Northup, D. E., Boston, P. J. y Duchene, H. R. (2000). Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem. Geol., 169: 399-423. doi:10.1016/S0009-2541(00)00217-5
  • Hoyos, M., Soler, V., Cañaveras, J. C., Sánchez-Moral, S. y Sanz-Rubio, E. (1998). Microclimatic characterization of a karst system. Human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ. Geol., 33: 231-242. doi:10.1007/s002540050242
  • Kellerman, K. F. (1915). Relation of bacteria to deposition of calcium carbonate. Geol. Soc. Am. Bull., 26: 58.
  • Laiz, L., González, J. M., y Saiz-Jiménez, C. (2003). Microbial communities in caves: Ecology, physiology, and effects on paleolythic paintings. In: Art, Biology, and Conservation: Biodeterioration of works of Art (R. J. Koestler, V. R. Koestler, A. E. Carola y F. E. Nieto-Fernández, edit.). The Metropolitan Museum of Art, New York, 210-225.
  • Mastromei, G., Biagiotti, L., Daly, S., Perito, B. y Tiano, P. (1999). Stone reinforcement by biomediated calcite crystal precipitation. International Conference on Microbiology and Conservation, (ICMC’99), Florence, 253-256.
  • McCallum, M. F., y Guhathakurta, K. (1970). The precipitation of calcium carbonate from seawater by bacteria isolated from Bahama bank sediments. J. Appl. Bacteriol., 33: 649-655.
  • Molin, S. y Givskov, M. (1999). Application of molecular tools for in situ monitoring of bacterial growth activity. Environ. Microbiol., 1: 383-391. doi:10.1046/j.1462-2920.1999.00056.x
  • Northup, D. E., Reysenbach, A. y Pace, N. (1997). Microorganisms and speleothems. In: Cave Minerals of the World (Hill, C. y Forti, P., edit.). NSS, Huntsville, 261-266.
  • Northup, D. E., Dahm, C. N., Melim, L. A., Spilde, M. N, Crossey, L. J., Lavoie, K. H., Mallory, L. M., Boston, P. J., Cunningham, K. I., y Barns, S. M. (2000). Evidence por geomicrobiological interactions in Guadalupe caves. J. Cave Karst Stud., 62: 80-90.
  • Northup, D. E. y Lavoie, K. H. (2001). Geomicrobiol. Of caves: A review. Geomicrobiol. J., 18: 199-220. doi:10.1080/01490450152467750
  • Rivadeneyra, M. A., Delgado, R., Delgado, G., Del Moral, A., Ferrer, M. R., Ramos-Cormenzana, A. (1994). Precipitation of carbonates by Bacillus sp. Isolated from saline soils. Geomicrobiol. J., 11: 174-184.
  • Rodríguez-Navarro, C., Rodríguez-Gallego, M., Ben Chekroun, K. y González-Muñoz, M. T. (2003). Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization. Appl. Environ. Microb., 69: 2182-2193. doi:10.1128/AEM.69.4.2182-2193.2003
  • Sánchez-Moral, S., Cañaveras, J. C., Laiz, L, Saiz, C., Bedoya, J. y Luque, L. (2003a). Biomediated precipitation of calcium carbonate metastable phases in hypogean environments. A short review. Geomicrobiol. J., 20: 491-500. doi:10.1080/713851131
  • Sánchez-Moral, S., Bedoya, J., Luque, L., Cañaveras, J. C., Jurado, V., Laiz, L. y Saiz, C. (2003b). Biomineralization of different crystalline phases by bacteria isolated from catacombs. In: Molecular Biology & Cultural Heritage (C. Saiz, edit.). Balkema, Lisse, 179-185.
  • Sánchez-Moral, S., Luque, L., Cañaveras, J. C., Laiz, L., Jurado, V., Hermosín, B. y Saiz-Jiménez, C. (2004). Bioinduced barium precipitation in San Callixtus and Domitilla Catacombs. Ann. Microbiol., 54: 1-12.
  • Sánchez-Moral, S., Luque, L., Cuezva, S., Soler, V., Benavente, D., Laiz, L., González, J. M., Saiz, C. (2005). Deterioration of building materials in Roman catacombs: The influence of visitors. Sci. Total Environ., 349: 260-276. doi:10.1016/j.scitotenv.2004.12.080
  • Schabereiter-Gurtner, C., Saiz-Jiménez, C., Piñar, G., Lubitz, W. y Rölleke, S. (2002). Altamira cave Paleolithic paintings harbor partly unknown bacterial communities. FEMS Microbiol. Lett., 211: 7-11. doi:10.1111/j.1574-6968.2002.tb11195.x
  • Schabereiter-Gurtner, C., Saiz, C., Piñar, G., Lubitz, R. y Rölleke, S. (2004). Phylogenetic diversity of bacteria associated with Paleolithic painting and surrounding rock walls in two spanish caves (Llonín, La Garma). FEMS Microbiol. Ecol., 47: 235-247. doi:10.1016/S0168-6496(03)00280-0
  • Smith, K. S. y Ferry, J. G. (2000). Prokaryotic carbonic anhydrases. FEMS Microbiol. Rev., 24: 335-366. doi:10.1111/j.1574-6976.2000.tb00546.x
  • Stevenson, B. S., Eichorst, S. A., Wertz, J. T., Schmidt, T. M. y Breznak, J. A. (2004). New strategies for cultivation and detection of previously uncultured microbes. Appl. environ. Microbiol., 70: 4748-4755. doi:10.1128/AEM.70.8.4748-4755.2004
  • Tripp, B. C., Smith, K. y Ferry, J. G. (2001). Carbonic anhydrase: new insights for an ancient enzyme. J. Biol. Chem., 276: 48615-48618. doi:10.1074/jbc.R100045200
  • Verrecchia, E. P. y Verrecchia, K. E. (1994). Needlefiber calcite: a critical review and a proposed classification. J. Sediment. Res., A64: 650-664.
  • Vlasceanu, L., Sarbu, S. M., Engel, A. S. y Kinkle, B. K. (2000). Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol. J., 17: 125-140. doi:10.1080/01490450050023809
  • Ward, D. M., Weller, R. y Bateson, M. M. (1990). 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature, 345: 63-65.
  • Warscheid, Th. y Braams, J. (2000). Bioreceptivity of building stones. Int. Biodeter. Biodegr., 46: 343-368.
  • Wierzchos, J., Ascaso, C., Agar, F. J., García-Orellana, I., Carmona-Luque, A. y Respaldiza, M. A. (2006a). Identifying elements in rocks from the Dry Valleys desert (Antarctica) by ion beam proton induced X-ray emission. Nuclear instruments & methods in physics research section b-beam interactions with materials and atoms, 249: 571-574. doi:10.1016/j.nimb.2006.03.057
  • Wierzchos, J., Ascaso, C. y McKay, C. P. (2006b). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology, 6: 415-422. doi:10.1089/ast.2006.6.415
  • Zavarzin, G. A. (2002). Microbial Geochemical Calcium Cycle. Microbiology, 71: 1-17. doi:10.1023/A:1017945329951
  • Zimmermann, J., González, J. M., Ludwig, W., Saiz- Jiménez, C. (2005). Detection and phylogenetic relationships of a highly diverse uncultured acidobacterial community on paleolithic paintings in Altamira Cave using 23S rRNA sequence analyses. Geomicrobiol. J., 22: 379-388. doi:10.1080/01490450500248986