Effects of numerical surface form in arithmetic word problems

  1. Josetxu Orrantia 1
  2. David Múñez 1
  3. Sara San Romualdo 1
  4. Lieven Verschaffel 2
  1. 1 Universidad de Salamanca, Spain
  2. 2 Katholieke Universiteit Leuven, Belgium
Revista:
Psicológica: Revista de metodología y psicología experimental

ISSN: 1576-8597

Año de publicación: 2015

Volumen: 36

Número: 2

Páginas: 265-281

Tipo: Artículo

Otras publicaciones en: Psicológica: Revista de metodología y psicología experimental

Resumen

Los adultos calculan más eficazmente cuando los operandos se presentan en formato arábigo (3 + 5) que cuando se presentan en formato palabras numéricas (tres + cinco). Una explicación ofrecida es la mayor familiaridad visual de los dígitos relativo a las palabras numéricas. Sin embargo, la mayoría de los estudios se han limitado a operaciones simples de cálculo con sumas y multiplicaciones. En el presente trabajo analizamos hasta qué punto se produce el efecto del formato en el contexto de un problema aritmético, en el que la familiaridad visual se elimina (Manuel tenía 3 canicas y le dieron 5). Participantes con diferente nivel de competencia en fluidez aritmética resolvieron problemas de suma y resta con los operandos en ambos formatos. Los resultados mostraron un efecto del formato, con mayor rapidez en formato dígitos que en palabras numéricas. Además los efectos fueron más evidentes en la operación de resta y en los participantes menos competentes en fluidez aritmética. Estos resultados fueron interpretados en función de una mayor eficacia del formato dígitos para acceder a la semántica del número.

Referencias bibliográficas

  • Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric approach. Developmental Review, 2, 213–236.
  • Ashcraft, M. H. (1987). Children’s knowledge of simple arithmetic: A developmental model and simulation. In J. Bisanz, C. J. Brainerd, & R. Kail (Eds.), Formal methods in developmental psychology: Progress in cognitive development research (pp. 302–338). New York: Springer-Verlag.
  • Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44, 75–106.
  • Ashcraft, M. H., & Guillaume, M. M. (2009). Mathematical cognition and the problem size effect. Psychology of Learning and Motivation, 51, 121–151.
  • Campbell, J. I. D. (1992). In defense of the encoding-complex approach: Reply to McCloskey, Macaruso, & Whetstone. In J. I. D. Campbell (Ed.), The nature and origins of mathematical skills (pp. 539–556). Amsterdam: Elsevier.
  • Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53, 1–44.
  • Campbell, J. I. D. (1999). The surface form x problem size interaction in cognitive arithmetic: evidence against an encoding locus. Cognition, 70, B25–B33.
  • Campbell, J. I. D., & Alberts, N. A. (2009). Operation-specific effects of numerical surface form on elementary calculation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 999–1011.
  • Campbell, J. I. D., & Clark, J. M. (1988). An encoding complex view of cognitive number processing: Comment on McCloskey, Sokol, and Goodman (1986). Journal of Experimental Psychology: General, 117, 204–214.
  • Campbell, J. I. D., & Clark, J. M. (1992). Cognitive number processing: An encodingcomplex perspective. In J. I. D. Campbell (Ed.), The nature and origins of mathematical skills (pp. 457–492). Amsterdam: Elsevier.
  • Campbell, J. I. D., & Epp, L. J. (2005). Architectures for arithmetic. In J. I. D. Campbell (Ed.), The handbook of mathematical cognition (pp. 347–360). New York, NY: Psychology Press
  • Campbell, J. I. D., & Fugelsang, J. (2001). Strategy choice for arithmetic verification: Effects of numerical surface form. Cognition, 80, B21–B30.
  • Campbell, J. I. D., & Graham, D. J. (1985). Mental multiplication skill: Structure, process, and acquisition. Canadian Journal of Psychology, 39, 338–366.
  • Campbell, J. I. D., Kanz, C. L., & Xue, Q. (1999). Number processing in Chinese–English bilinguals. Mathematical Cognition, 5, 1–39.
  • Campbell, J. I. D., & Metcalfe, W. S. (2009). Numerical abstractness and elementary arithmetic. Commentary to Cohen Kadosh & Walsh: Numerical representation in the parietal lobes. Behavioral and Brian Sciences, 32, 313-373.
  • Campbell, J. I. D., Parker, H. R., & Doetzel, N. L. (2004). Interactive effects of numerical surface form and operand parity in cognitive arithmetic. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 51–64.
  • Campbell, J. I. D., & Penner-Wilger, M. (2006). Calculation latency: The mu of memory and the tau of transformation. Memory & Cognition, 34, 217–226.
  • Campbell, J. I. D., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130, 299–315.
  • Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics education on the number sense. Plos One, 7, e33832.
  • Cohen Kadosh, R. (2008) Numerical representation: Abstract or non-abstract? The Quarterly Journal of Experimental Psychology 61, 1160–1168.
  • Cohen Kadosh, R., Henik, A. & Rubinsten, O. (2008) Are Arabic and verbal numbers processed in different ways? Journal of Experimental Psychology: Learning, Memory and Cognition 34, 1377–1391.
  • Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brian Sciences, 32, 313-373.
  • Colomé, A., Bafalluy, M. G., & Noël, M.-P. (2011). Getting to the source: a questionnaire on the learning and use of arithmetical operations. Psicológica, 32, 223-253.
  • Damian, M. F. (2004). Asymmetries in the processing of Arabic digits and number words. Memory & Cognition, 32, 164–171.
  • De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 10, 469–479.
  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.
  • Dehaene S (1997) The number sense. Oxford: Oxford University Press.
  • Dehaene, S. (2001). Précis of the number sense. Mind & Language, 16, 16-36.
  • Dehaene, S., & Akhavein, R. (1995) Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition 21, 314–326.
  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.
  • Dehaene, S., & Cohen, L. (1995). Toward an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.
  • Fayol, M., & Thevenot, C. (2012). The use of procedural knowledge in simple addition and subtraction problems. Cognition, 123, 392-403.
  • Hamann, M. S., & Ashcraft, M. H. (1986). Textbook presentations of the basic addition facts. Cognition and Instruction, 3, 173–192.
  • Hecht, S. A. (1999). Individual solution processes while solving addition and multiplication math facts in adults. Memory & Cognition, 27, 1097–1107.
  • Herrera, A., & Macizo, P. (2012). Semantic processing in the production of numerals across notations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 40–51.
  • Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29.
  • Jackson, N., & Coney, J. (2007a). Simple arithmetic processing: Surface form effects in a priming task. Acta Psychologica 125, 1–19.
  • Jackson, N., & Coney, J. (2007b). Simple arithmetic processing: Individual differences in automaticity. European Journal of Cognitive Psychology, 19, 141-160.
  • Kirk, E. P., & Ashcraft, M. K. (2001). Telling stories: The perils and promise of using verbal reports to study math strategies. Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 157-175.
  • LeFevre, J.-A., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., & Sadesky, G. S. (1996). Multiple routes to solution of single-digit multiplication problems. Journal of Experimental Psychology: General, 125, 284–306.
  • LeFevre, J.-A., DeStefano, D., Penner-Wilger, M., & Daley, K. E. (2006). Selection of procedures in mental subtraction. Canadian Journal of Experimental Psychology, 60, 209–220.
  • LeFevre, J.-A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect in adults. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 216–230.
  • Lyons, I. M., & Beilock, S. L. (2011) Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 12, 256–261.
  • McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia. Cognition, 44, 107–157.
  • McCloskey, M., & Macaruso, P. (1995). Representing and using numerical information. American Psychologist, 50, 351–363.
  • McCloskey, M., Macaruso, P., & Whetstone, T. (1992). The functional architecture of numerical processing mechanisms: defending the modular model. In J. I. D. Campbell (Ed.), The nature and origins of mathematical skills (pp. 493–538). Amsterdam: Elsevier.
  • Moyer, R. S., Landauer, T. K. (1967) Time required for judgements of numerical inequality. Nature, 215, 1519–1520.
  • Naccache, L. & Dehaene, S. (2001). Unconscious semantic priming extends to novel unseen stimuli. Cognition 80, 223–237.
  • Noël, M.-P., Fias, W., & Brysbaert, M. (1997). About the influence of the presentation format on arithmetical-fact retrieval processes. Cognition, 63, 335–374.
  • Orrantia J., & Múñez D. (2013). Arithmetic word problem solving: Evidence for a magnitude-based mental representation. Memory & Cognition. 41, 98–108.
  • Orrantia J., Múñez D., Vicente, S., Verschaffel, L., & Rosales, J. (2014). Processing of situational information in story problem texts. An analysis from on-line measures. Spanish Journal of Psychology, 17, e8, 1-14.
  • Orrantia, J., Rodríguez, L., Múñez, D., & Vicente, S. (2012). Inverse reference in subtraction performance: An analysis from arithmetic word problems. The Quarterly Journal of Experimental Psychology, 65, 725–738.
  • Orrantia, J., Rodríguez, L., & Vicente, S. (2010). Automatic activation of addition facts in arithmetic word problems. The Quarterly Journal of Experimental Psychology, 63, 310–319.
  • Riley, N. S., Greeno, J., & Heller, J. I. (1983). Development of children’s problem solving ability in arithmetic. In H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 153–196). New York, NY: Academic Press.
  • Sasanguie, D., & Reynvoet, B. (2014). Adults’ arithmetic builds on fast and automatic processing of Arabic digits: Evidence from an audiovisual matching paradigm. Plos One, 9, e87739.
  • Schwarz, W. & Ischebeck, A. (2000) Sequential effects in number comparison. Journal of Experimental Psychology: Human Perception and Performance, 26, 1606–1621.
  • Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary subtraction. Journal of Experimental Psychology: Learning, Memory and Cognition, 29, 1339–1352.
  • Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  • Siegler, R. S., & Shipley, E. (1995). Variation, selection, and cognitive change. In G. Halford & T. Simon (Eds.), Developing cognitive competence: New approaches to process modelling (pp. 31–76). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  • Sokol, S. M., McCloskey, M., Cohen, N. J., & Aliminosa, D. (1991). Cognitive representations and processes in arithmetic: Inferences from the performance of brain-damaged patients. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 355–376.
  • Thevenot, C., Castel, C., Fanget, M., & Fayol, M. (2010). Mental subtraction in high and lower-skilled arithmetic problem solvers: Verbal report vs. operand-recognition paradigms. Journal of Experimental Psychology: Learning, Memory & Cognition, 36, 1242–1255.
  • Thevenot, C., Fanget, M., & Fayol, M. (2007). Retrieval or non-retrieval strategies in mental arithmetic? An operand-recognition paradigm. Memory & Cognition, 35, 1344–1352.
  • Vanbinst, K., Ghesquière, P., & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6, 129-136.
  • Zbrodoff, N. J., & Logan, G. D. (2005). What everyone finds: The problem size effect. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 331–346). New York: Psychology Press.