Motivación e innovaciónAceptación de tecnologías móviles en los maestros en formación

  1. José Carlos Sánchez Prieto 1
  2. Susana Olmos Migueláñez 1
  3. Francisco José García Peñalvo 1
  1. 1 GRupo de Investigación en InterAcción y eLearning (GRIAL), Instituto Universitario de Ciencias de la Educación (IUCE), Universidad de Salamanca
RIED: revista iberoamericana de educación a distancia

ISSN: 1138-2783

Year of publication: 2017

Issue Title: La integración efectiva del dispositivo móvil en la educación y en el aprendizaje

Volume: 20

Issue: 2

Pages: 273-292

Type: Article

DOI: 10.5944/RIED.20.2.17700 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: RIED: revista iberoamericana de educación a distancia


Cited by

  • Dialnet Métricas Cited by: 2 (03-12-2023)
  • Web of Science Cited by: 4 (19-10-2023)
  • Dimensions Cited by: 5 (09-04-2023)

Índice Dialnet de Revistas

  • Year 2017
  • Journal Impact: 1.180
  • Field: EDUCACIÓN Quartile: C1 Rank in field: 12/239


  • Social Sciences: A

Journal Citation Indicator (JCI)

  • Year 2017
  • Journal Citation Indicator (JCI): 1.7
  • Best Quartile: Q1
  • Area: EDUCATION & EDUCATIONAL RESEARCH Quartile: Q1 Rank in area: 88/700


(Data updated as of 09-04-2023)
  • Total citations: 5
  • Recent citations: 3
  • Field Citation Ratio (FCR): 1.95


Mobile technologies constitute a didactic resource with great potential. However, their incorporation process to the classroom is not being implemented in a satisfying way. The future teachers will play a key role in the integration process of these technologies’ integration process in formal education contexts and, therefore, it is essential to know the factors that condition their decision-making process.This article presents the results of a research which analyzes the influence of motivational factors on the behavioral intention to use mobile technologies in the future teaching practice of the students from the Pre-primary Education Degree from the University of Salamanca. With this purpose, we have developed a TAM-based technology adoption model including the following constructs: perceived usefulness, perceived ease of use, perceived enjoyment, resistance to change and behavioral intention. The employed PLS-SEM analysis confirms the validity and reliability of the model. The results of the analysis of the structural model reflect the importance of perceived enjoyment and perceived usefulness in the adoption process, as well as the low relevance of perceived ease of use. In total, the motivational factors enable the prediction of a high percentage of the variance of behavioral intention, which reveals the need to design educational programmes that emphasize on these elements. 

Funding information

Este trabajo de investigación ha sido realizado dentro del programa de Doctorado en Formación en la Sociedad del Conocimiento desarrollado en la Universidad de Salamanca. Esta investigación ha sido parcialmente financiada por la Universidad de Salamanca a través del “Programa III de ayudas para la contratación de personal investigador”. Este trabajo está parcialmente financiado por el Ministerio de Economía y Competitividad del Gobierno de España a través del proyecto DEFINES (Ref. TIN2016-80172-R).

Bibliographic References

  • Abbad, M. M., Morris, D., y de Nahlik, C. (2009). Looking under the bonnet: Factors affecting student adoption of E-learning systems in jordan. International Review of Research in Open and Distance Learning, 10(2)
  • Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl, y J. Beckmann (Eds.), Action control: From cognition to behavior (pp. 11-39). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-69746-3_2
  • Anderson, S. E., Groulx, J. G., y Maninger, R. M. (2011). Relationships among preservice teachers' technology-related abilities, beliefs, and intentions to use technology in their future classrooms. Journal of Educational Computing Research, 45(3), 321-338. doi:10.2190/EC.45.3.d
  • Briz-Ponce, L., Pereira, A., Carvalho, L., Juanes-Méndez, J. A., y García-Peñalvo, F. J. (2017). Learning with mobile technologies – Students’ behavior. Computers in Human Behavior, In Press. doi:
  • Cano-Giner, J. L., Fernandez, V., y Diaz-Boladeras, M. (2015). Do we know enough about the factors of the TAM model to predict the information system's acceptance? En R. Zhang, Z. Zhang, K. Liu y J. Zhang (Eds.), Proceedings of 3rd international conference on logistics, informatics and service science (pp. 75-79). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-40660-7_10
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum.
  • Darban, M. y Amirkhiz, H. (2015). Herd behavior in technology adoption: The role of adopter and adopted characteristics. System Sciences (HICSS), 2015 48th Hawaii International Conference On, Hwaii. 3591-3600. doi:10.1109/HICSS.2015.432
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
  • Davis, F. D., Bagozzi, R. P., y Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the Workplace1. Journal of Applied Social Psychology, 22(14), 1111-1132. doi:10.1111/j.1559-1816.1992.tb00945.x
  • DITRENDIA. (2016). Informe mobile en españa y en el mundo 2016. Recuperado de
  • Ertmer, P. A. (1999). Addressing first- and second-order barriers to change: Strategies for technology integration. Educational Technology Research and Development, 47(4), 47-61. doi:10.1007/BF02299597
  • Fernández Rodrigo, L. (2016). El uso didáctico y metodológico de las tabletas digitales en aulas de educación primaria y secundaria de cataluña. Pixel-Bit. Revista De Medios Y Educación, (48), 9-25.
  • Fishbein, M., y Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, Massachusets: Addison-Wesley Pub. Co.
  • Fornell, C., y Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi:10.2307/3151312
  • Gerow, J. E., Ayyagari, R., Thatcher, J. B., y Roth, P. L. (2013). Can we have fun @ work? the role of intrinsic motivation for utilitarian systems. European Journal of Information Systems, 22(3), 360-380. doi:10.1057/ejis.2012.25
  • Heflin, H., Shewmaker, J., y Nguyen, J. (2017). Impact of mobile technology on student attitudes, engagement, and learning. Computers & Education, 107, 91-99. doi:
  • Henseler, J., Ringle, C. M., y Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. doi:10.1007/s11747-014-0403-8
  • Holt-Reynolds, D. (1992). Personal history-based beliefs as relevant prior knowledge in course work. American Educational Research Journal, 29(2), 325-349. doi:10.3102/00028312029002325
  • Hu, L., y Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424-453.
  • Hu, P. J., Clark, T. H. K., y Ma, W. W. (2003). Examining technology acceptance by school teachers: A longitudinal study. Information & Management, 41(2), 227-241. doi:
  • Joint Quality Initiative. (2004). Shared ‘Dublin’descriptors for short cycle, first cycle, second cycle and third cycle awards. Recuperado de
  • Jonassen, D. H., y Easter, M. A. (2012). Conceptual change and student-centered learning environments. En Jonassen, D. H. y Easter, M. A. (Eds.),Theoretical Foundations of Learning Environments (pp. 95-113). Rutledge.
  • Kearney, M., Schuck, S., Burden, K., & Aubusson, P. (2012). Viewing mobile learning from a pedagogical perspective. Research in Learning Technology, 20(1), 1-17. doi:10.3402/rlt.v20i0.14406
  • Kiraz, E., y Ozdemir, D. (2006). The relationship between educational ideologies and technology acceptance in pre-service teachers. Journal of Educational Technology & Society, 9(2), 152-165.
  • Kreijns, K., Vermeulen, M., Kirschner, P. A., Buuren, H. v., y Acker, F. V. (2013). Adopting the integrative model of behaviour prediction to explain teachers’ willingness to use ICT: A perspective for research on teachers’ ICT usage in pedagogical practices. Technology, Pedagogy and Education, 22(1), 55-71. doi:10.1080/1475939X.2012.754371
  • Lee, B., Yoon, J., y Lee, I. (2009). Learners’ acceptance of e-learning in south korea: Theories and results. Computers & Education, 53(4), 1320-1329. doi:
  • Lewin, K. (1947). Frontiers in group dynamics: Concept, method, and reality in social sciences, social equilibria, and social change. Human Relations, (1), 5-41.
  • Nikou, S. A., & Economides, A. A. (2017). Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Computers & Education, 109, 56-73. doi:
  • Nunnally, J. C. (1978). Psychometric theory. New York: McGraw-Hill.
  • Oreg, S. (2003). Resistance to change: Developing an individual differences measure. Journal of Applied Psychology, 88(4), 680-693.
  • Palazón Herrera, J. (2015). Aprendizaje móvil basado en microcontenidos como apoyo a la interpretación instrumental en el aula de música en secundaria. Píxel-Bit. Revista De Medios Y Educación, (46), 119-136.
  • Park, N., Lee, K. M., y Cheong, P. H. (2007). University instructors' acceptance of electronic courseware: An application of the technology acceptance model. Journal of Computer-Mediated Communication, 13(1), 163-186.
  • Ringle, C. M., Wende, S., y Becker, J. M. (2015). SmartPLS 3. Bönningstedt: SmartPLS. Recuperado de
  • Sánchez-Prieto J. C., Olmos Migueláñez, S., y García-Peñalvo, F. J. (2014). Understanding mobile learning: devices, pedagogical implications and research lines. Education in the Knowledge Society, 15(1), 20-42.
  • Sánchez-Prieto, J. C., Olmos-Migueláñez, S., y García-Peñalvo, F. J. (2016a). Las tabletas digitales en educación formal: Características principales y posibilidades pedagógicas. En A. I. Callejas Albiñana, J. V. Salido López y Ó Jerez García (Eds.), Competencia digital y tratamiento de la información: Aprender en el siglo XXI (pp. 269-280). Cuenca: Ediciones de la Universidad de Castilla-La Mancha.
  • Sánchez-Prieto, J. C., Olmos-Migueláñez, S., y García-Peñalvo, F. J. (2016b). Informal tools in formal contexts: Development of a model to assess the acceptance of mobile technologies among teachers. Computers in Human Behavior, 55 Part A, 519-528. doi:
  • Sánchez-Prieto, J. C., Olmos Migueláñez, S., y García-Peñalvo, F. J. (2017a). ¿Utilizarán los futuros docentes las tecnologías móviles? Validación de una propuesta de modelo TAM extendido. RED-Revista de Educación a Distancia, 52, Artículo 5. doi:
  • Sánchez-Prieto, J. C., Olmos-Migueláñez, S., y García-Peñalvo, F. J. (2017b). MLearning and pre-service teachers: An assessment of the behavioral intention using an expanded TAM model. Computers in Human Behavior, In Press. doi:
  • SCOPEO. (2011). M-learning en españa, portugal y américa latina. Recuperado de
  • Sevillano García, L., y Vázquez Cano, E. (2014). Análisis de la funcionalidad didáctica de las tabletas digitales en el espacio europeo de ducación superior. Universities and Knowledge Society Journal, 11(3), 67-81.
  • Sung, Y., Chang, K., y Liu, T. (2016). The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis. Computers & Education, 94, 252-275. doi:
  • Teo, T., y Noyes, J. (2011). An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers & Education, 57(2), 1645-1653.
  • Teo, T. (2015). Comparing pre-service and in-service teachers' acceptance of technology: Assessment of measurement invariance and latent mean differences. Computers & Education, 83, 22-31. doi:
  • Teo, T., Milutinović, V., y Zhou, M. (2016). Modelling serbian pre-service teachers' attitudes towards computer use: A SEM and MIMIC approach. Computers & Education, 94, 77-88. doi:
  • Tokel, S. T. y İsler, V. 2013. Acceptance of virtual worlds as learning space. Innovations in Education and Teaching International, 52(1), 254-264. DOI=10.1080/14703297.2013.820139.
  • UNESCO, 2013. El futuro del aprendizaje móvil: Implicaciones para la planificación y la formulación de políticas. Recuperado de
  • UNESCO, 2012. Aprendizaje móvil para docentes: Temas globales. Recuperado de
  • Valtonen, T., Kukkonen, J., Kontkanen, S., Sormunen, K., Dillon, P., y Sointu, E. (2015). The impact of authentic learning experiences with ICT on pre-service teachers' intentions to use ICT for teaching and learning. Computers & Education, 81, 49-58. doi:
  • Venkatesh, V., y Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
  • Venkatesh, V., y Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. doi:10.1111/j.1540-5915.2008.00192.x
  • Venkatesh, V., Morris, M. G., Gordon B. Davis, y Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
  • Yadegaridehkordi, E., Iahad, N.A., Baloch, S.Z. (2013). Success factors influencing the adoption of M-learning. International Journal of Continuing Engineering Education and Life Long Learning, 23(2), 167-178. doi:10.1504/IJCEELL.2013.054290
  • Yang, S. C., y Huang, Y. (2008). A study of high school english teachers’ behavior, concerns and beliefs in integrating information technology into english instruction. Computers in Human Behavior, 24(3), 1085-1103. doi: