Análisis de temas emergentes a través de Twitter
-
1
Universidad de Salamanca
info
ISSN: 1135-3716
Year of publication: 2016
Volume: 22
Issue: 2
Pages: 67-73
Type: Article
More publications in: Scire: Representación y organización del conocimiento
Abstract
Analysis of emerging issues in social networks applies to the views expressing individual users, to control activities and acts of associations, analyze political campaigns or study the impact of advertising campaigns by companies. For detection of these issues the algorithm Latent Dirichlett Allocation shall apply to a set of profiles in the field of information and documentation, in order to know the topics covered in these groups and to assess whether the detection system is reliable. The approach works correctly, and provides reliable results.
Bibliographic References
- Aiello, L. M., Petkos, G., Martin, C., Corney, D., Papadopoulos, S., Skraba, R., Jaimes, A. (2013). Sensing trending topics in Twitter. // Multimedia, IEEE Transactions on. 15:6, 1268-1282.
- Allan, J. (2002). Introduction to topic detection and tracking Topic detection and tracking (pp. 1-16): Springer.
- Anta, A. F., Chiroque, L. N., Morere, P., & Santos, A. (2013). Sentiment analysis and topic detection of Spanish tweets: A comparative study of of NLP techniques. // Procesamiento del lenguaje natural. 50, 45-52.
- Benhardus, J.; Kalita, J. (2013). Streaming trend detection in twitter. International Journal of Web Based Communities. 9:1, 122-139.
- Blei, D. M.; Ng, A. Y.; Jordan, M. I. (2003). Latent dirichlet al- location. the Journal of machine Learning research. 3, 993-1022.
- Cheong, M.; Lee, V. (2009). Integrating web-based intelli- gence retrieval and decision-making from the twitter trends knowledge base. // Proceedings of the 2nd ACM workshop on Social web search and mining.
- Mathioudakis, M.; Koudas, N. (2010). Twittermonitor: trend detection over the twitter stream. // Proceedings of the 2010 ACM SIGMOD International Conference on Man- agement of data.
- Mehrotra, R.; Sanner, S.; Buntine, W.; Xie, L. (2013). Improving lda topic models for microblogs via tweet pooling and automatic labeling. // Proceedings of the 36th international ACM SIGIR conference on Research and develop- ment in information retrieval.
- Ostrowski, D. A. (2015). Using latent dirichlet allocation for topic modelling in twitter. // Semantic Computing (ICSC), 2015 IEEE International Conference on.
- Petrovic, S.; Osborne, M.; Lavrenko, V. (2010). The edinburgh twitter corpus. // Proceedings of the NAACL HLT 2010 Workshop on Computational Linguistics in a World of So- cial Media.
- Petrović, S.; Osborne, M.; Lavrenko, V. (2010). Streaming first story detection with application to twitter. Paper presented at the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics.
- Pinholster, G.; Ham, B. (2013). Science communication re- quires time, trust, and Twitter. // Science. 342 (6165), 1464-1464.
- Salton, G.,; Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. // Information processing & management. 24:5, 513-523.
- Sankaranarayanan, J.; Samet, H.; Teitler, B. E.; Lieberman, M. D.; Sperling, J. (2009). Twitterstand: news in tweets. // Proceedings of the 17th acm sigspatial international con- ference on advances in geographic information systems.
- Sharifi, B.; Hutton, M.-A.; Kalita, J. K. (2010). Experiments in microblog summarization. // Social Computing (Social-Com), 2010 IEEE Second International Conference on.
- Sriram, B.; Fuhry, D.; Demir, E.; Ferhatosmanoglu, H.; Demirbas, M. (2010). Short text classification in twitter to improve information filtering. // Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval.
- Wunsch-Vincent, S., & Vickery G. (2010). The evolution of news and the Internet: OECD.