Formación a distancia en materia de ingeniería de soldaduraenfoque multidisciplinar mediante modelos 3D

  1. Rodríguez Martín, Manuel
  2. Rodríguez Gonzálvez, Pablo
Journal:
Teaching and Learning Innovation Journal = Revista de Innovación en la Enseñanza y el Aprendizaje

ISSN: 2531-1123

Year of publication: 2018

Issue: 2

Pages: 7-13

Type: Article

DOI: 10.18002/TELEIN.V2I0.5619 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Teaching and Learning Innovation Journal = Revista de Innovación en la Enseñanza y el Aprendizaje

Abstract

The present work describes a new teaching methodology based on the latest research oriented to the threedimensional reconstruction of welds that allows the generation of work packages aimed at the acquisition of competences specific to welding lab activities without the need for a physical same. This methodology, which can be cataloged within the methodologies based on virtual laboratories (LVs), is applicable in e-learning programs or can also be used as support material for face-to-face programs, mainly in the degree programs related to Industrial, naval and aeronautical engineering, as well as engineering related to geomatics and computer science. The distribution of the packages is easy to implement through virtual training platforms and the work with the models can be done with open or free software, without the need of additional costs for the training entities that use them.

Bibliographic References

  • American Welding Society. Examination book of specifications. (2006) (1st ed.). Miami, Fla.
  • American Welding Society. The everyday pocket handbook for visual inspection and weld discontinuities - causes and remedies. (2004) (1st ed.). Miami, Fla.
  • Calvo Verdú, M. (2006). Formación abierta y a distancia (1st ed.). Alcalá de Guadaira, Sevilla: Editorial Mad.
  • Cerezo, F., Sastrón, F. (2015). Laboratorios Virtuales y Docencia de la Automática en la Formación Tecnológica de Base de Alumnos Preuniversitarios. Revista Iberoamericana De Automática e Informática Industrial RIAI 12(4): 419-doi: 10.1016/j.riai.2015.04.005.
  • CloudCompare V.2.6.6 (http://www.danielgm.net/cc/)
  • Heradio, R., de la Torre, L., Galán, D., Cabrerizo, F.J., Herrera-Viedma, E., Dormido, S. (2016). Virtual and remote labs in education: a bibliometric analysis. Computers & Education 98: 14-38. doi:10.1016/j.compedu.2016.03.010
  • Mastmeyer, A., Wilms, M., Fortmeier, D., Schr¨oder, J., Handels, H. (2016). Real-Time ultrasound simulation for training of us-guided needle insertion in breathing virtual patients. Studies in Health Technology and Informatics : 219-226. doi:10.3233/978-1-61499-625-5-219.
  • Muñoz Nieto, A.L. (2014). Coordinación e intercambio de experiencias docentes en el marco del máster en geotecnologías cartográficas en ingeniería y arquitectura. Proyecto de innovación docente, Universidad de Salamanca, ID2014/0178.
  • Osborne, B., Parange, N., Thoirs, K. (2015). The effectiveness of the use of high fidelity simulators in obstetric ultrasound training: A systematic review. Australasian Journal of Ultrasound in Medicine 18(3): 107-111.
  • Rodríguez-Gonzálvez, P., Muñoz-Nieto, A.L., Izquierdo Alvarez, V., Almaraz Menéndez, F., Arias Pérez, B. (2018) Virtualización del máster en geotecnologías cartográficas en ingeniería y arquitectura. En Nuevo desafíos en la enseñanza superior (pp. 173-177). Ourense, España.
  • Rodríguez-Gonzálvez, P., Rodriguez-Martín, M., Ramos, L., González-Aguilera, D. (2017). 3D reconstruction methods and quality assessment for visual inspection of welds. Automation In Construction 79: 49-58. doi:10.1016/j.autcon.2017.03.002.
  • Rodríguez-Martín, M., Lagüela S., González-Aguilera, D., Rodríguez-Gonzálvez, P. (2015). Procedure for quality inspection of welds based on macro-photogrammetric threedimensional reconstruction. Optics & Laser Technology 73-62. doi:10.1016/j.optlastec.2015.04.011.
  • Rodríguez-Martín, M., Rodríguez-Gonzálvez, P., González-Aguilera, D. Fernández-Hernández, J. (2017). Feasibility study of a structured light system applied to welding inspection based on articulated coordinate measure machine data.
  • IEEE Sensors Journal. doi:10.1109/JSEN.2017.2700954.
  • Rossiter, J. (2017). Low production cost virtual modelling and control laboratories for chemical engineering students. In International Federation of Automatic Control 20th IFAC Symposium on Automatic Control in Aerospace-ACA Quebec.
  • Vergara, D., Núñez, F., Ferrer, J., Rodríguez-Martín, M. (2016). Teaching of ultrasound test by means of virtual reality. In TeLe(In)2 Teaching & Learning Innovation Institute Conference (pp. 9-12). Madrid. Retrieved from https://telein2.wordpress.com/publications/
  • Vergara, D., Rubio, M.P., Prieto, F. (2014). Nueva herramienta virtual para la enseñanza de la caracterización mecánica de materiales. Revista de Educación en Ingeniería 9(17): 98-107.
  • Welding and allied processes - Classification of geometric imperfections in metallic materials - Part 1: Fusion welding. European Committee for Standardization. EN-ISO 6520-1:2007 (2007).
  • Welding. Fusion-welded joints in Steel, nickel, titanium and their alloys (beam welding excluded). Quality levels for imperfections (ISO 5817:2003 corrected version.2005, including Technical Corrigendum). European Committee for Standardization. EN-ISO-5817: 2009 (2009).