Técnicas de minería de datos con sotware libre para la detección de factores asociados al rendimiento

  1. Fernando Martínez-Abad 1
  2. Juan Pablo Hernández-Ramos 1
  1. 1 Universitad de Salamanca
Revista:
REXE: Revista de estudios y experiencias en educación

ISSN: 0717-6945 0718-5162

Ano de publicación: 2018

Volume: 2

Número: 3

Páxinas: 135-145

Tipo: Artigo

DOI: 10.21703/REXE.ESPECIAL3_201812514512 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: REXE: Revista de estudios y experiencias en educación

Resumo

he computational capacities allowed by current computer equipment, coupled with the availability of mass data in all areas, including Education Sciences, demand the development and application of statistical techniques and sotware that help in obtaining meaningful information on these mass data and that facilitate the data transformation into useful knowledge for society. he collection of meaningful information in these data universes and its transformation into useful knowledge for society. Based on a research project under development, this paper presents the potential of the Weka statistical sotware to develop statistical analysis from massive large-scale evaluation databases. In this context, Weka allows researchers to apply techniques of Data Mining, considered within the techniques of the so-called Big Data. hus, this work shows a proposal for the use of Weka sotware in the analysis and detection of nontrivial information between the immensity of the available data. In this way, this study presents to the scientiic community a set of statistical procedures and techniques that can be valuable and replicable in multiple educational and social ields. he conclusions relect on the possibilities of the transference of the knowledge generated to the society in general and to the educational agents in particular.

Referencias bibliográficas

  • Alcover, R., Benlloch, J., Blesa, P., Calduch, M. A., Celma, M., Ferri, C., y Zúnica, L. R. (2007,July). Análisis del rendimiento académico en los estudios de informática de la Universidad Politécnica de Valencia aplicando técnicas de minería de datos (pp. 163-170). Paper presented at XIII Jornadas de Enseñanza Universitaria de la Informatica.
  • Ballesteros, A., Sánchez-Guzmán, D., & García, R. (2014). Minería de datos educativa: Una herramienta para la investigación de patrones de aprendizaje sobre un contexto educativo. Latin-American Journal of Physics Education, 17, 662-668.
  • Baradwaj, B. K., & Pal, S. (2011). Mining Educational data to analyze students’ performance. International Journal of Advanced Computer Science and Applications, 2(6), 63-69.
  • Carter, C. L., & Hamilton, H. J. (1995). A fast, on-line generalization algorithm for knowledge discovery. Applied Mathematics Letters, 8(2), 5-11. Doi: 10.1016/0893-9659(95)00002-8
  • Castro, M., & Lizasoain, L. (2012). Las técnicas de modelización estadística en la investigación educativa: minería de datos, modelos de ecuaciones estructurales y modelos jerárquicos lineales. Revista Española de Pedagogía, 70, 131-148.
  • Educational Resources Information Center, N. C. for E. S., & National Science Foundation. (1996). hird International Mathematics and Science Study (TIMSS). Washington D.C.: U.S. Dept. of Education.
  • Gamazo, A., Martínez-Abad, F., Olmos-Migueláñez, S., & Rodríguez-Conde, M. J. (2018). Evaluación de factores relacionados con la eicacia escolar en PISA 2015. Un análisis multinivel. Revista de educación, (379), 56-84.
  • Han, J., Pei, J., & Kamber, M. (2011). Data Mining: Concepts and Techniques (3rd ed). Amsterdam: Elsevier.
  • Houtsma, M., & Swami, A. (1995). Set-oriented data mining in relational databases. Data and Knowledge Engineering, 17, 245-262. Doi: 10.1016/0169-023X(95)00024-M
  • Hsieh, M. (2013). Data mining from education databases examine the factors impacting the school performance in the United States. International Journal of Intelligent Technologies and Applied Statistics, 6, 135-143. Doi: 10.6148/IJITAS.2013.0602.03
  • Joaristi Olariaga, L., Lizasoain Hernández, L., & Azpillaga Larrea, V. (2014). Detección y caracterización de los centros escolares de alta eicacia de la Comunidad Autónoma del País Vasco mediante Modelos Transversales Contextualizados y Modelos Jerárquicos Lineales. ESE : Estudios Sobre Educación, (27), 37–61.
  • Kiray, S. A., Gok, B., & Bozkir, A. S. (2015). Identifying the factors afecting science and mathematics achievement using data mining methods. Journal of Education in Science, Environment and Health (JESEH), 1, 28-48.
  • Ma, X. (2005). Growth in Mathematics achievement: Analysis with classiication and regression trees. he Journal of Educational Research, 99, 78-86.
  • Marquez, J., Shack-Marquez, J., & Wascher, W. L. (1985). Statistical inference, model selection and research experience. A multinomial model of data mining. Economics Letters, 18, 39-44. Doi:10.1016/0165-1765(85)90075-8
  • Martínez Abad, F., & Chaparro Caso López, A. A. (2017). Data-mining techniques in detecting factors linked to academic achievement. School Efectiveness and School Improvement, 28(1), 39– 55. Doi: 10.1080/09243453.2016.1235591
  • Martinez-Abad, F., Chaparro Caso López, A. A., & Lizasoain Hernández, L. (2014). he socioeconomic index in the analysis of large-scale assessments: Case study in Baja California (Mexico). In Proceedings TEEM’ 14. Technological Ecosystems for Enhancing Multiculturality (pp. 461–467). Salamanca: ACM.
  • Mullis, I. V., Martin, M. O., Kennedy, A. M., Trong, K. L., & Sainsbury, M. (2009). PIRLS 2011 Assessment Framework. Amsterdam: International Association for the Evaluation of Educational Achievement.
  • Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. In 37th ASEE/IEEE Frontiers in Education Conference (pp. T2G-7–T2G-12).
  • OECD. (2013). PISA 2012 results. París: OECD Publishing
  • OECD. (2016). PISA 2015 results. Paris: OECD Publishing.
  • Osmanbegović, E., & Suljić, M. (2012). Data mining approach for predicting student performance. Economic Review: Journal of Economics and Business, 10 (1), 3-14.
  • Schumacher, P., Olinsky, A., Quinn, J., & Smith, R. (2010). A comparison of logistic regression, neural networks, and classiication trees predicting sucess of actuarial students. Journal of Education for Business, 85, 258-263.
  • Tekin, A. (2014). Early prediction of students’ grade point averages at graduation: A data mining approach. Eurasian Journal of Educational Research, 54, 207-226.