Twitter como herramienta de comunicación científica en España. Principales agentes y redes de comunicación.

  1. Pérez-Rodríguez, Ana Victoria
  2. González-Pedraz, Cristina
  3. Alonso Berrocal, José Luís
Journal:
Communication papers: media literacy and gender studies

ISSN: 2014-6752

Year of publication: 2018

Volume: 7

Issue: 13

Pages: 95-112

Type: Article

DOI: 10.33115/UDG_BIB/CP.V7I13.21986 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Communication papers: media literacy and gender studies

Sustainable development goals

Abstract

The study of the main agents, communication networks and information flows on Twitter is an emerging research topic. It has been applied in areas such as political communication, sports or tourism, but not in science communication. The present work is focused on detecting and measuring the main agents and communication networks about science on Twitter through the Network Theory. The 109 personal and institutional users who are acting as science influencers in Spain are identified. This network presents itself as a stable and compact community. The most productive profiles are the personal ones, which indicates that the activity on Twitter depends more on an interest and an individual commitment than on having a communication team. A use of Twitter is detected, not so much focused on the diffusion of contents and opinions on science, but rather on the promotion of products and events of dissemination. A restricted analysis of the hashtags has made possible to verify the strong link between the tweets and the national and international science news. It also shows the special interest that Atapuerca arouses in the conversations about science on Twitter in Spain.

Bibliographic References

  • • Akhtar, N., & Ahamad, M. V. (2017). Graph Tools for Social Network Analysis. Graph Theoretic Approaches for Analyzing Large-Scale Social Networks, 18.
  • • Alonso Berrocal, J. L., Gómez Díaz, R., Figuerola, C. G., Zazo Rodríguez, Á. F., y Cordón García, J. A. (2012). “Propuesta de estudio del campo semántico de los libros electrónicos en Twitter”. Scire, 18(2), 87-97.
  • • Antenucci, D., Handy, G., Modi, A., y Tinkerhess, M. (2011). “Classification of tweets via clustering of hashtags”. EECS, 545, 1-11.
  • • Ausserhofer, J., y Maireder, A. (2013). “National politics on Twitter: Structures and topics of a networked public sphere”. Information, Communication & Society, 16(3), 291-314.
  • • Barbagallo, D., Bruni, L., Francalanci, C., y Giacomazzi, P. (2012). “An Empirical Study on the Relationship between Twitter Sentiment and Influence in the Tourism Domain”. En: Information and Communication Technologies in Tourism 2012 (pp. 506-516). Springer, Vienna.
  • Boyd, D., Golder, S., y Lotan, G. (2010). “Tweet, tweet, retweet: Conversational aspects of retweeting on twitter”. En: System Sciences (HICSS), 2010 43rd Hawaii International Conference.
  • • Bonetta, L. (2009). “Should you be tweeting?”. Cell, 139(3), 452-453
  • • Brown Jarreau, P. (2014). An explosion of alternatives. EMBO reports, e201439130.
  • • Brown, D., y Hayes, N. (2008). Influencer marketing. Who really influences your customers? Routledge.
  • • Burt, R. S. (1999). “The social capital of opinion leaders”. The Annals of the American Academy of Political and Social Science, 566(1), 37-54.
  • • Castillo, C., Mendoza, M., y Poblete, B. (2011). “Information credibility on twitter”. En: Proceedings of the 20th international conference on World wide web (pp. 675-684). ACM.
  • • Cha, M., Benevenuto, F., Haddadi, H., y Gummadi, K. (2012). “The world of connections and information flow in twitter”. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(4), 991-998.
  • • Chamberlin, L., y Lehmann, K. (2011). “Twitter in higher education”. Cutting-edge Technologies in Higher Education, 1, 375-391.
  • • Chen, S.-C., Yen, D. C., y Hwang, M. I. (2012). “Factors influencing the continuance intention to the usage of Web 2.0: An empirical study”. Computers in Human Behavior, 28(3), 933-941.
  • • De Semir, V. (2010). “El «mutatis mutandis» de la comunicación científica en la era de Internet”. ArtefaCToS, 3(1), 49-79. Disponible en:
  • • Dehkharghani, R., Mercan, H., Javeed, A., & Saygin, Y. (2014). Sentimental causal rule discovery from Twitter. Expert Systems with Applications, 41(10), 4950-4958.
  • • Dehmer, M., Emmert-Streib, F., y Pickl, S. (2015). Computational Network Theory: Theoretical Foundations and Applications (Vol. 5). John Wiley & Sons.
  • • Del Fresno Garcia, M., Daly, A. J., y Segado Sanchez-Cabezudo, S. (2016). “Identifying the new Influences in the Internet Era: Social Media and Social Network Analysis”. Revista Española de Investigaciones Sociológicas, 153: 23-40.
  • • Dubois, E., y Gaffney, D. (2014). “The multiple facets of influence: identifying political influentials and opinion leaders on Twitter.” American Behavioral Scientist, 58(10), 1260-1277.
  • • Fernández de Lis, P. (2013). “Ciencia y periodismo en la red”. Quaderns de la Fundació Dr. Antoni Esteve, 28, 15-19.
  • • Garcia Esparza, S., O’Mahony, M. P., y Smyth, B. (2012). “Mining the real-time web: a novel approach to product recommendation”. Knowledge-Based Systems, 29, 3-11.
  • • Gerber, A. (2014). “Science Caught Flat-Footed: How Academia Struggles with Open Science Communication”. En: Bartling, S., y Friesike, S. Opening Science. Springer International Publishing. Págs 73-80.
  • • Java, A., Song, X., Finin, T., y Tseng, B. (2007). “Why we twitter: understanding microblogging usage and communities”. En: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis (pp. 56-65). ACM.
  • • Kahle, K., Sharon, A. J., y Baram-Tsabari, A. (2016). “Footprints of Fascination: Digital Traces of Public Engagement with Particle Physics on CERN’s Social Media Platforms”. PloS one, 11(5), e0156409
  • • Kelly, R. (2009). “Twitter study reveals interesting results about usage”. PearAnalytics. August 12th.
  • • King, C. W., y Summers, J. O. (1970). “Overlap of opinion leadership across consumer product categories”. Journal of Marketing Research, 43-50.
  • • Kiss, C., y Bichler, M. (2008). “Identification of influencers—measuring influence in customer networks”. Decision Support Systems, 46(1), 233-253.
  • • Kwak, H., Lee, C., Park, H., y Moon, S. (2010). “What is Twitter, a social network or a news media?”. En: Proceedings of the 19th international conference on World wide web (pp. 591- 600). ACM.
  • • Lanthaler, M., y Gütl, C. (2012). “On using JSON-LD to create evolvable RESTful services”. En: Proceedings of the Third International Workshop on RESTful Design (pp. 25-32). ACM.
  • • Lee, K., Palsetia, D., Narayanan, R., Patwary, M. M. A., Agrawal, A., y Choudhary, A. (2011). “Twitter trending topic classification”. Paper presented at the Data Mining Workshops (ICDMW), IEEE 11th International Conference.
  • • Liang, X., Su, L. Y. F., Yeo, S. K., Scheufele, D. A., Brossard, D., Xenos, M., ... y Corley, E. A. (2014). “Building Buzz (Scientists) Communicating Science in New Media Environments”. Journalism & Mass Communication Quarterly.
  • • Li, N., Akin, H., Su, L. Y. F., Brossard, D., Xenos, M., y Scheufele, D. A. (2016). “Tweeting disaster: an analysis of online discourse about nuclear power in the wake of the Fukushima Daiichi nuclear accident. JCOM, 15(05), A02-2.
  • • Lozano, E., y Vaca, C. (2017). “Crisis management on Twitter: Detecting emerging leaders”. En: eDemocracy & eGovernment (ICEDEG), 2017 Fourth International Conference on (pp. 140-147). IEEE.
  • • Mandavilli, A. (2011). “Trial by twitter”. Nature, 469 (7330), 20. • Montenegro, V., y Escudero, H. (2013). “Las redes sociales y la difusión de la tecnología y la innovación”. En: III Congreso Internacional de Comunicación Pública de la Ciencia, Santa Fe, Argentina.
  • • Narr, S., De Luca, E. W., y Albayrak, S. (2011). “Extracting semantic annotations from twitter”. En: Proceedings of the fourth workshop on Exploiting semantic annotations in information retrieval.
  • • Nentwich, M., y König, R. (2014). “Academia Goes Facebook? The Potential of Social Network Sites in the Scholarly Realm”. En: Bartling, S., y Friesike, S. Opening Science. 107-124. Springer International Publishing.
  • • Ogan, C., y Varol, O. (2017). “What is gained and what is left to be done when content analysis is added to network analysis in the study of a social movement: Twitter use during Gezi Park”. Information, Communication & Society, 20(8), 1220-1238.
  • • Pearce, W., Holmberg, K., Hellsten, I., y Nerlich, B. (2014). “Climate change on Twitter: Topics, communities and conversations about the 2013 IPCC Working Group 1 report”. PloS one, 9(4), e94785.
  • • Peters, H. P., Dunwoody, S., Allgaier, J., Lo, Y. Y., y Brossard, D. (2014). “Public communication of science 2.0”. EMBO reports, 15(7), 749-753. • Pont Sorribes, C., Cortiñas Rovira, S., y Di Bonito, I. (2013). “Challenges and opportunities for science journalists in adopting new technologies: the case of Spain”. JCOM, 12 (03).
  • • Quiñónez Gómez, H., y Sánchez Colmenares, M. (2016). “Uso de Twitter en el periodismo científico. Los casos de los diarios El Nacional y El Universal en Venezuela”. Questión, 1.
  • • Razis, G., y Anagnostopoulos, I. “InfluenceTracker: Rating the Impact of a Twitter Account”. (2016). En: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Sioutas, S., y Makris, C. Artificial Intelligence Applications and Innovations. Springer International Pu.
  • • Ribas, C. (2012). “La divulgación y la comunicación de la ciencia, en la encrucijada”. SEBBM, 173, 10-12.
  • • Rogers, R. (2013, May). “Debanalizing Twitter: The transformation of an object of study”. En: Proceedings of the 5th Annual ACM Web Science Conference, 356-365. ACM.
  • • Runge, K. K., Yeo, S. K., Cacciatore, M., Scheufele, D. A., Brossard, D., Xenos, M., y Su, L. Y. F. (2013). “Tweeting nano: How public discourses about nanotechnology develop in social media environments”. Journal of nanoparticle research, 15(1), 1-11.
  • • Simmie, D., Vigliotti, M. G., y Hankin, C. (2014). “Ranking twitter influence by combining network centrality and influence observables in an evolutionary model”. Journal of Complex Networks, 2(4), 495-517.
  • • Sriparasa, S. S. (2013). JavaScript and JSON essentials. Packt Publishing Ltd.
  • • Veletsianos, G. (2012). “Higher education scholars’ participation and practices on Twitter”. Journal of Computer Assisted Learning, 28(4), 336-349.
  • • Veltri, G. A. (2013). Microblogging and nanotweets: Nanotechnology on Twitter. Public Understanding of Science, 22(7), 832-849. • Westerman, D., Spence, P. R., y Van Der Heide, B. (2012). “A social network as information: The effect of system generated reports of connectedness on credibility on Twitter”. Computers in Human Behavior, 28(1), 199-206.
  • • Willis, A., Fisher, A., y Lvov, I. (2015). “Mapping networks of influence: tracking Twitter conversations through time and space”. Participations: Journal of Audience & Reception Studies, 12(1), 494-530.
  • • Yerva, S. R., Miklós, Z., y Aberer, K. (2012). “Quality-aware similarity assessment for entity matching in Web data”. Information Systems, 37(4), 336-351.
  • • Zhao, W. X., Jiang, J., Weng, J., He, J., Lim, E. P., Yan, H., y Li, X. (2011). “Comparing twitter and traditional media using topic models”. En: European Conference on Information Retrieval (pp. 338-349). Springer, Berlin, Heidelberg.