Differences in the environmental control of leaf senescence of four Quercus species coexisting in a Mediterranean environment

  1. del Río García, Teresa
  2. Mediavilla, Sonia 1
  3. Silla, Fernando
  4. Escudero, Alfonso
  1. 1 Departamento de Ecología. Universidad de Salamanca
Revista:
Forest systems

ISSN: 2171-5068

Año de publicación: 2015

Volumen: 24

Número: 2

Tipo: Artículo

DOI: 10.5424/FS/2015242-07263 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Forest systems

Resumen

Aims of study: Our aim is to check the effect of different environmental factors on the leaf senescence of four Quercus species with different leaf longevities, to help us better understand the implications of climate change on leaf demography.Area of study: The study was carried out in two sites of theprovince of Salamanca (central-westernSpain), both sites showing differences in their temperatures and soil water availability.Material and Methods: Over four years (2007-2010) we monitored the number of leaves of the different cohorts labelled on five specimens of each species at both sites to elaborate life-tables and calculate mortality rates. Mortality rates were then related to several other variables measured during the same period: air temperature, soil water availability, precipitation, predawn water potentials (Ypd) and leaf N resorption.Main results: In the two deciduous species maximum daily temperatures and the time during which their values remain above a certain threshold (between 11 and12ºC of maximum daily temperature) are the main factors controlling the timing of leaf abscission. In the evergreen species abscission of old leaves showed no relationship with the environmental factors analyzed. By contrast, mortality rates of old leaves were related to seasonal N resorption values, with the maximum mortality of old leaves coinciding in time with the maximum withdrawal of N from shed leaves and also with the emergence of the new leaf cohort.Research highlights: The increase in the duration of the leaves of the two deciduous species, as a result of the delayed senescence by warmer autumnal temperatures, could contribute to reducing the differences in the length of the productive leaf life with respect to the evergreen species. This could improve the competitive capacity of deciduous species as opposed to that of evergreen species, and thus alter their respective distribution patterns.Keywords: climate change; deciduous; evergreen; leaf abscission; temperature; water availability.

Referencias bibliográficas

  • References
  • Andivia E, Fernández M, Vázquez-Piqué J, González-Pérez A, Tapias R, 2010. Nutrient return from leaves and litterfall in a Mediterranean Cork oak (Quercus suber L.) forest in southwestern Spain. Eur J Forest Res 129: 5-12. http://dx.doi.org/10.1007/s10342-009-0274-6
  • Bader MKF, Körner C, 2010. No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Glob Change Biol 16: 2830-2843. http://dx.doi.org/10.1111/j.1365-2486.2010.02159.x
  • Begon M, Mortimer A, 1986. Population Ecology. Blackwell Scientific Publications. Oxford.
  • Borchert R, Rivera G, Hagnauer W, 2002. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34: 27-39. http://dx.doi.org/10.1111/j.1744-7429.2002.tb00239.x
  • Caritat A, García-Berthou E, Lapeña R, Villar L, 2006. Litter production in a Quercus suber Forest in Montseny (NE Spain) and its relationship to meteorological conditions. Ann For Sci 63: 791-800. http://dx.doi.org/10.1051/forest:2006061
  • Castro-Díez P, Montserrat-Martí G, 1998. Phenological patterns of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE-Spain. Plant Ecol 139: 103-112. http://dx.doi.org/10.1023/A:1009759318927
  • Chabot BF, Hicks D, 1982. The ecology of leaf life spans. Annu Rev Ecol Syst 13: 229-259. http://dx.doi.org/10.1146/annurev.es.13.110182.001305
  • Chapin FS III, Mattson PA, Mooney HA, 2002. Principles of terrestrial ecosystems ecology. Springer, New York, NY, USA.
  • Chen X, Xu L, 2012. Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int J Biometeorol 56: 695-706. http://dx.doi.org/10.1007/s00484-011-0471-0
  • Clark JS, Salk C, Melillo J, Mohan J, 2014. Tree phenology responses to winter chilling, spring warming, at north and south range limits. Funct Ecol 28: 1344-1355. http://dx.doi.org/10.1111/1365-2435.12309
  • Cook BI, Wolkovich EM, Parmesan C, 2012. Divergent responses to spring and winter warming drive community level flowering trends. Proc Natl Acad Sci USA 109: 9000-9005. http://dx.doi.org/10.1073/pnas.1118364109
  • De Lillis M, Fontanella A, 1992. Comparative phenology and growth in different species of the Mediterranean maquis of central Italy. Vegetatio 99/100: 83-96. http://dx.doi.org/10.1007/BF00118213
  • Doi H, Katano I, 2008. Phenological timings of leaf budburst with climate change in Japan. Agric For Meteorol 148: 512-516. http://dx.doi.org/10.1016/j.agrformet.2007.10.002
  • Dorronsoro CF, 1992. Suelos. El libro de las dehesas salmantinas. Junta de Castilla y León, España. 487-542 pp.
  • Eamus D, Prior L, 2001. Ecophysiology of trees of seasonally dry tropics: comparisons among phenologies. Adv Ecol Res 32: 113-197. http://dx.doi.org/10.1016/s0065-2504(01)32012-3
  • Escudero A, Del Arco JM, Moreira MS, 1987. Variation saisonnière de la production de la litière par plusieurs espèces ligneuses méditerranéennes. For Méditerr 1: 15-22.
  • Escudero A, Mediavilla S, 2003. Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. J Ecol 91: 880-889. http://dx.doi.org/10.1046/j.1365-2745.2003.00818.x
  • García-Mozo H, Mestre A, Galan C, 2010. Phenological trends in southern Spain: a response to climate change. Agric For Meteorol 150: 575-580. http://dx.doi.org/10.1016/j.agrformet.2010.01.023
  • Gordo O, Sanz JJ, 2005. Phenology and climate change: a long term study in a Mediterranean locality. Oecologia 146: 484-495. http://dx.doi.org/10.1007/s00442-005-0240-z
  • Gordo O, Sanz JJ, 2009. Long-term temporal changes of plant phenology in the Western Mediterranean. Glob Chang Biol 15: 1930-1948. http://dx.doi.org/10.1111/j.1365-2486.2009.01851.x
  • Gordo O, Sanz JJ, 2010. Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16: 1082-1106. http://dx.doi.org/10.1111/j.1365-2486.2009.02084.x
  • Ibáñez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD et al., 2010. Forecasting phenology under global warming. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 365: 3247-3260. http://dx.doi.org/10.1098/rstb.2010.0120
  • IPCC, 2007. Climate Change 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático, Pachauri, R.K.; Resinger, A. IPCC, Ginebra, Suiza. 104 pp.
  • Jensen ME, Haise HR, 1963. Estimating evapotranspiration from solar radiation. J Irrig Drain E- ASCE 89: 15-41.
  • Jolly W, Running SW, 2004. Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Glob Chang Biol 10: 303-308. http://dx.doi.org/10.1046/j.1365-2486.2003.00701.x
  • Killmann W, Thong HL, 1995. The periodicity of growth in tropical trees with special reference to Dipterocarpaceae – a review. IAWA J 16: 329-335. http://dx.doi.org/10.1163/22941932-90001423
  • Kolářová E, Nekovář J, Adamík P, 2014. Long-term temporal changes in central European tree phenology (1946-2010) confirm the recent extension of growing seasons. Int J Biometeorol 58: 1739-1748. http://dx.doi.org/10.1007/s00484-013-0779-z
  • Kramer K, Leinonen I, Loustau D, 2000. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forest ecosystems: an overview. Int J Biometeorol 44: 67-75. http://dx.doi.org/10.1007/s004840000066
  • Landsberg JJ, 1986. Physiological ecology of forest production. Academic Press, London.
  • Lloret F, Peñuelas J, Ogaya R, 2004. Establishment of co-existing Mediterranean tree species under a varying soil moisture regime. J Veg Sci 15: 237-244. http://dx.doi.org/10.1111/j.1654-1103.2004.tb02258.x
  • Mediavilla S, 2000. Intercambios gaseosos en especies leñosas mediterráneas. Efectos de la longevidad y de otros rasgos foliares sobre la eficiencia fotosintética en el empleo del agua y el nitrógeno. Doctoral Thesis. Universidad de Salamanca, Spain.
  • Mediavilla S, Escudero A, 2003a. Relative growth rate of leaf biomass and leaf nitrogen content in several Mediterranean woody species. Plant Ecol 168: 321-332. http://dx.doi.org/10.1023/A:1024496717918
  • Mediavilla S, Escudero A, 2003b. Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity. Tree Physiol 23: 987-996. http://dx.doi.org/10.1093/treephys/23.14.987
  • Mediavilla S, Escudero A, 2003c. Photosynthetic capacity, integrated over the lifetime of a leaf, is predicted to be independent of leaf longevity in some tree species. New Phytol 159: 203-211. http://dx.doi.org/10.1046/j.1469-8137.2003.00798.x
  • Mitrakos KA, 1980. A theory for Mediterranean plant life. Acta Oecologica 1: 245-252.
  • Montserrat-Martí G, Palacio S, Milla R, 2004. Fenología y características funcionales de las plantas leñosas mediterráneas. In: Ecología del bosque mediterráneo en un mundo cambiante (Valladares F, ed). Ministerio de Medio Ambiente. Spain. pp: 129-162.
  • Morecroft MD, Roberts JM, 1999. Photosynthesis and stomatal conductance of mature canopy oak (Quercus robur) and sycamore (Acer pseudoplatanus) trees throughout the growing season. Funct Ecol 13: 332-342. http://dx.doi.org/10.1046/j.1365-2435.1999.00327.x
  • Morin X, Roy J, Sonié L, Chuine I, 2010. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186: 900-910. http://dx.doi.org/10.1111/j.1469-8137.2010.03252.x
  • Olivares E, 1997. Prolonged leaf senescence in Clusia multiflora HBK. Trees 11: 370-377.
  • Peñuelas J, Filella I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J, 2004. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161: 837- 846. http://dx.doi.org/10.1111/j.1469-8137.2004.01003.x
  • Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J, 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past two decades. Glob Biogeochem Cycles 21: GB3018.
  • Reich PB, Uhl C, Walters MB, Ellsworth DS, 1991. Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86: 16-24. http://dx.doi.org/10.1007/BF00317383
  • Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O'Keefe J, 2009. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29: 321-331. http://dx.doi.org/10.1093/treephys/tpn040
  • Sa C, Madeira M, Gazarini L, 2001. Produção e decomposiçao da folhada de Quercus suber L. Ver Cie Agr 24: 245-256.
  • Sánchez E, Gallardo C, Gaertner MA, Arribas A, Castro M, 2004. Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Chang 44: 163-180. http://dx.doi.org/10.1016/j.gloplacha.2004.06.010
  • Seghieri J, Carreau J, Boulain N, De Rosnay P, Arjounin M, Timouk F, 2012. Is water availability really the main environmental factor controlling the phenology of woody vegetation in the central Sahel? Plant Ecol 213: 861-870. http://dx.doi.org/10.1007/s11258-012-0048-y
  • Shaver GR, 1981. Mineral nutrition and leaf longevity in an evergreen shrub, Ledum palustre ssp. decumbens. Oecologia 49: 362-365. http://dx.doi.org/10.1007/BF00347599
  • Sherry RA, Zhou X, Gu S et al., 2007. Divergence of reproductive phenology under climate warming. Proc. Natl. Acad. Sci. U.S.A 104: 198-202. http://dx.doi.org/10.1073/pnas.0605642104
  • Solomon S, Qin D, Manning M et al., 2007. Climate change 2007: The Physical Science Basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
  • Spano D, Zinder RL, Cesaraccio C, 2003. Mediterranean climates. In: Phenology: an integrative environmental science (Schwartz MD, ed). Kluwer Academic Publishers, London. pp: 139- 156. http://dx.doi.org/10.1007/978-94-007-0632-3_10
  • Valdez-Hernández M, Andrade JL, Jackson PC, Rebolledo-Vieyra M, 2010. Phenology of five tree species of a tropical dry forest in Yucatán, Mexico: effects of environmental and physiological factors. Plant & Soil 329: 155-171. http://dx.doi.org/10.1007/s11104-009-0142-7
  • Vitasse Y, Delzon S, Dufrêne E, Pontailler J-Y, Louvet J-M, Kremer A, Michalet R, 2009. Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agric For Meteorol 149: 735-744. http://dx.doi.org/10.1016/j.agrformet.2008.10.019
  • Wielgolaski FE, Nordli O, Karlsen SR, O'Neill B, 2011. Plant phenological variation related to temperature in Norway during the period 1928-1977. Int J Biometeorol 55: 819-830. http://dx.doi.org/10.1007/s00484-011-0467-9
  • Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC, 2008. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. Proc Natl Acad Sci USA 105: 17029-17033. http://dx.doi.org/10.1073/pnas.0806446105