Marcadores nucleares de la competencia aritmética en preescolares

  1. Orrantia, José
  2. San Romualdo, Sara
  3. Matilla, Laura
  4. Sánchez, Mercedes R.
  5. Múñez, David
  6. Verschaffel, Lieven
Revue:
Psychology, Society & Education

ISSN: 1989-709X 2171-2085

Année de publication: 2017

Volumen: 9

Número: 1

Pages: 121-134

Type: Article

DOI: 10.25115/PSYE.V9I1.466 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

D'autres publications dans: Psychology, Society & Education

Résumé

The numerical and arithmetic skills are critical predictors of academic success. In current studies, it has been questioned what numerical skills relate with arithmetic achievement, whether the non-symbolic numerical magnitudes processing or the symbolic magnitudes processing. In the current study a sample of 104 preschool children was taken. They completed a non-symbolic numerical comparison task, a symbolic numerical comparison task and a dot enumeration task, as well as a standardized arithmetic performance test (TEMA-3). Moreover, general cognitive skills such a intelligence, processing speed, inhibitory control, memory span and visuo-spatial memory, were controlled. To test whether the variables of number processing predict in the absence of the above predictors, it was conducted a hierarchical regression analysis, taking the TEMA-3 as a dependent variable and introducing the other predictors and the numerical processing tasks in next steps. The model explained 65.5% of the variance. But only the symbolic magnitudes comparison and the enumeration contributed to the arithmetic achievement variance in absence of the control variables, while the non-symbolic magnitudes comparison did not contribute significantly. These results suggest that a good knowledge of symbolic numbers is important to the children’s mathematical development, being particularly crucial the access to the magnitude from symbolic numbers more than the magnitude representation per se.

Références bibliographiques

  • Ansari, D. (2012). The foundations of numerical and mathematical abilities: a literature review. Global Partnership for Education (GPE) working paper on series, no. 4. Washington DC: World Bank.
  • Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? Journal of Experimental Child Psychology, 117, 12–28.
  • Barth, H., La Mont, K., Lipton, J., &Spelke, E. S. (2005).Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102, 14116-14121.
  • Barth, H., Starr, A., & Sullivan, J. (2009).Children's mappings of large number words to numerosities. Cognitive Development, 24, 248-264.
  • Butterworth, B., Varma, S., &Laurillard, D. (2011). Dyscalculia: from brain to education. Science, 332, 1049-1053.
  • Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Science, 14, 534-541.
  • Cohen-Kadosh, R., Lammertyn, J. & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84, 132-147.
  • Chen, Q., & Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172.
  • De Smedt, B. & Gilmore, C.K. (2011).Defective number module or impaired access?Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108, 278-292.
  • De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and nonsymbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55.
  • Dehaene, S. (1992).Varieties of numerical abilities. Cognition, 44(1-2), 1-42.
  • Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York: Oxford University Press.
  • Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A., Klebanov, P., et al. (2007). School readiness and later achievement. Developmental Psychology, 43, 1428–1446.
  • Fazio, L. K., Bailey, D. H., Thompson, C. A., &Siegler, R. S (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72.
  • Feigenson, L. & Carey, S. (2003) Tracking individuals via object files: evidence from infants’ manual search. Developmental Scicience, 5, 568-584.
  • Feigenson, L., Dehaene, S., &Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.
  • Ginsburg, H. P., &Baroody, A. J. (2003). Test of early math ability. Austin, TX: PRO-ED.
  • Gray, S. A., & Reeve, R. A. (2014). Preschoolers’ dot enumeration abilities are markers of their arithmetic competence. PLoS One, 9(4), e94428.
  • Halberda, J., &Feigenson, L. (2008).Developmental change in the acuity of the" Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457.
  • Halberda, J., & Ly, R. (2013).PANAmath: The psychophysical assessment of number-sense acuity. Unpublished manuscript, Johns Hopkins University.
  • Holloway, I. D., & Ansari, D. (2009).Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29.
  • Landerl, K. (2013). Development of numerical processing in children with typical and dyscalculic arithmetic skills -a longitudinal study. Frontiers in Psychology 4, Article 459.
  • Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395–438.
  • Leibovich, T., & Ansari, D. (2016). The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions. Canadian Journal of Experimental Psychology, 70, 12-23.
  • Lipton, J. S., &Spelke, E. S. (2005). Preschool children's mapping of number words to nonsymbolicnumerosities. Child Development, 76(5), 978-988.
  • Macmillan, N. A., & Creelman, C. D. (2005). Detection Theory: A User’s Guide. Mahwah, NJ: Lawrence Erlbaum Associates.
  • McCloskey, M. (2007).Quantitative literacy and developmental dyscalculias. In D. B. Berch,
  • M. M. M. Mazzocco (Eds.), Why is math so hard for some children (pp. 415-429). Baltimore, MD: Paul H. Brookes.
  • Moore, A. M., & Ashcraft, M. H. (2015). Children’s mathematical performance: Five cognitive tasks across five grades. Journal of Experimental Child Psychology, 135, 1-24.
  • Moyer, R. S., &Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(2), 1519–1520.
  • Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number.Journal of Experimental Child Psychology, 103, 490–502.
  • Raven, J. C., Court, J. H., & Raven, J. (1992). Standard progressive matrices.Oxford Psychologists Press, Oxford, UK.
  • Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141(4), 649.
  • Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2016). Associations of non‐symbolic and symbolic numerical magnitude processing with mathematical competence: a meta‐analysis. Developmental science. doi:10.1111/desc.12372
  • Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading researchquarterly, 21, 360-407.