¿Utilizarán los futuros docentes las tecnologías móviles?validación de una propuesta de modelo TAM extendido

  1. José Carlos Sánchez Prieto 1
  2. Susana Olmos Migueláñez 1
  3. Francisco José García Peñalvo 1
  1. 1 Universidad de Salamanca

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

RED: revista de educación a distancia

ISSN: 1578-7680

Year of publication: 2017

Issue: 52

Type: Article

DOI: 10.6018/RED/52/5 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: RED: revista de educación a distancia


Cited by

  • Dialnet Métricas Cited by: 15 (26-11-2023)
  • Web of Science Cited by: 11 (19-10-2023)
  • Dimensions Cited by: 16 (09-04-2023)

Índice Dialnet de Revistas

  • Year 2017
  • Journal Impact: 0.600
  • Field: EDUCACIÓN Quartile: C1 Rank in field: 39/239


  • Social Sciences: B

Journal Citation Indicator (JCI)

  • Year 2017
  • Journal Citation Indicator (JCI): 0.18
  • Best Quartile: Q4
  • Area: EDUCATION & EDUCATIONAL RESEARCH Quartile: Q4 Rank in area: 560/700


(Data updated as of 09-04-2023)
  • Total citations: 16
  • Recent citations: 11


The development of technology acceptance models for their implementation in the field of education constitutes an increasingly interesting trend. A common practice in this kind of research is to develop TAM-based models expanded with other constructs. This paper belongs to this line, presenting a proposal analyzing the effects of resistance to change and compatibility on the intention of using mobile technologies in pre-service teachers’ future practice. To this end, we conducted a study with 678 students from the Primary Education Teacher Bachelor’s Degree from the University of Salamanca, and we subjected the model to a factorial analysis to confirm its validity. The results show the students’ favorable intention of using mobile technologies. The hypothesis test revealed some significant differences according to student gender, year and school, and the factor analysis we carried out reflected adequate goodness of fit indices despise some validity issues.

Bibliographic References

  • Abbad, M. (2011). A conceptual model of factors affecting e-learning adoption Proceedings of the 2011 IEEE Global Engineering Education Conference (EDUCON) (pp. 1108-1119). EEUU: IEEE. doi: 10.1109/EDUCON.2011.5773286
  • Abbad, M. M., Morris, D., y de Nahlik, C. (2009). Looking under the bonnet: Factors affecting student adoption of E-learning systems in jordan. International Review of Research in Open and Distance Learning, 10(2), 1-15
  • Acarli, D. S., y Sağlam, Y. (2015). Investigation of pre-service teachers’ intentions to use of social media in teaching activities within the framework of technology acceptance model. Procedia Social and Behavioral Sciences, 176, 709-713. doi:http://dx.doi.org/10.1016/j.sbspro.2015.01.530
  • Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. En J. Kuhl y J. Beckmann (Eds.), (pp. 11-39). Berlin Heidelberg: Springer. doi:10.1007/978-3642-69746-3_2
  • Al-Somali, S. A., Gholami, R., y Clegg, B. (2009). An investigation into the acceptance of online banking in Saudi Arabia. Technovation, 29(2), 130-141.
  • Ariff, M. S. M., Yeow, S. M., y Zakuan, N. (2014). Acceptance of internet banking systems among young users; the effect of technology acceptance model. Advanced Science Letters, 20(1), 268-272.
  • Bachtiar, F. A., Rachmadi, A., y Pradana, F. (2014). Acceptance in the deployment of blended learning as a learning resource in information technology and computer science program, Brawijaya university Proceedings of the 2014 Asia-Pacific Conference on Computer Aided System Engineering (APCASE) (pp. 131-135). EEUU: IEEE. doi:10.1109/APCASE.2014.6924486
  • Bhattacherjee, A., y Hikmet, N. (2007). Physicians' resistance toward healthcare information technology: A theoretical model and empirical test. European Journal of Information Systems, 16(6), 725-737.
  • Biranvand, V. P., Hakkak, M., y Nejad, O. N. (2015). Resistance to change in online banking and extension technology acceptance model (TAM). Bulletin of the Georgian National Academy of Sciences, 9(1), 464-472.
  • Bourgonjon, J., De Grove, F., De Smet, C., Van Looy, J., Soetaert, R., y Valcke, M. (2013). Acceptance of game-based learning by secondary school teachers. Computers & Education, 67, 21-35. doi:http://dx.doi.org/10.1016/j.compedu.2013.02.010
  • Briz-Ponce, L., y García-Peñalvo, F. J. (2015). An empirical assessment of a technology acceptance model for apps in medical education. Journal of Medical Systems, 39(11), 176-180. doi:http://doi.org/10.1007/s10916-015-0352-x
  • Cao Y., Ajjan, H., y Hong, P. (2013). Using social media applications for educational outcomes in college teaching: A structural equation analysis. British Journal of Educational Technology, 44(4), 581-593. doi:10.1111/bjet.12066
  • Cenfetelli, R. T. (2004). Inhibitors and enablers as dual factor concepts in technology usage. Journal of the Association for Information Systems, 5(11), 473-492.
  • Chang, S., y Tung, F. (2008). An empirical investigation of students' behavioural intentions to use the online learning course websites. British Journal of Educational Technology, 39(1), 71-83. doi:10.1111/j.1467-8535.2007.00742.x
  • Chen, F. H., Looi, C. K., y Chen, W. (2009). Integrating technology in the classroom: A visual conceptualization of teachers' knowledge, goals and beliefs. Journal of Computer Assisted Learning, 25(5), 470-488. doi:10.1111/j.13652729.2009.00323.x
  • Chen, J. (2011). The effects of education compatibility and technological expectancy on e-learning acceptance. Computers & Education, 57(2), 1501-1511. doi:http://dx.doi.org/10.1016/j.compedu.2011.02.009
  • Chen, Y., Lin, Y., Yeh, R. C., y Lou, S. (2013). Examining factors affecting college students' intention to use web-based instruction systems: Towards an integrated model. Turkish Online Journal of Educational Technology, 12(2), 111-121.
  • Cheng, F. P., Wang, K. H., y Lin, I. C. (2013). Measuring the adoption and resistance of elearning by students Proceedings of The International Conference on E-Technologies and Business on the Web (EBW2013) (pp. 247-249).
  • Cheng, Y. (2015). Towards an understanding of the factors affecting m-learning acceptance: Roles of technological characteristics and compatibility. Asia Pacific Management Review, 20(3), 109-119. doi:http://dx.doi.org/10.1016/j.apmrv.2014.12.011
  • Clarkson, D. B., y Jenrich, R. I. (1988). Quartic rotation criteria and algorithms. Psychometrika, 53(2), 251-259.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982
  • Davis, F. D., y Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: Three experiments. International Journal of Human-Computer Studies, 45(1), 19-45. doi:http://dx.doi.org/10.1006/ijhc.1996.0040
  • Fishbein, M., y Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, Massachusets: Addison-Wesley Pub. Co.
  • Fong, R. W., Lee, J. C., Chang, C., Zhang, Z., Ngai, A. C., y Lim, C. P. (2014). Digital teaching portfolio in higher education: Examining colleagues' perceptions to inform implementation strategies. Internet and Higher Education, 20, 60-68.
  • Fornell, C., Tellis, G. J., y Zinkhan, G. M. (1982). Validity assessment: A structural equations approach using partial least squares. En B. J. Walker (Ed.), An assessment of marketing thought and practice (pp. 405-409). Chicago: American Marketing Association.
  • Fornell, C., y Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi:10.2307/3151312
  • García-Peñalvo, F. J., y Seoane-Pardo, A. M. (2015). Una revisión actualizada del concepto de eLearning. Décimo Aniversario. Education in the Knowledge Society, 16(1), 119-144. doi:10.14201/eks2015161119144
  • Gagnon, M., Ghandour, E. K., Talla, P. K., Simonyan, D., Godin, G., Labrecque, M., y Rousseau, M. (2014). Electronic health record acceptance by physicians: Testing an integrated theoretical model. Journal of Biomedical Informatics, 48, 17-27. doi:http://dx.doi.org/10.1016/j.jbi.2013.10.010
  • Goodhue, D. L., & Loiacono, E. T. (2002). Randomizing survey question order vs. grouping questions by construct: An empirical test of the impact on apparent reliabilities and links to related constructs Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 2002. HICSS (pp. 3456-3465). EEUU: IEEE. doi:10.1109/HICSS.2002.994385
  • Guo, X., Sun, Y., Wang, N., Peng, Z., y Yan, Z. (2013). The dark side of elderly acceptance of preventive mobile health services in china. Electronic Markets, 23(1), 49-61. doi:10.1007/s12525-012-0112-4
  • Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., y Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Nueva Jersey: Prentice-Hall International.
  • Hernández García, Á. (2008). Desarrollo de un modelo unificado de adopción del comercio electrónico entre empresas y consumidores finales. Aplicación al mercado español. E.T.S.I. Telecomunicación (UPM), Madrid.
  • Hsieh, P.-J. (2015). Healthcare professionals’ use of health clouds: Integrating technology acceptance and status quo bias perspectives. International Journal of Medical Informatics, 84(7), 512-523. doi:http://dx.doi.org/10.1016/j.ijmedinf.2015.03.004
  • Hsieh, P.-J., Lai, H.-M., y Hong, Y.-L. (2015). Explaining Physicians’ Acceptance and Resistance to the NHI Pharmacloud: A Theoretical Model and Empirical Test. En A. Kankanhalli, A. Burton-Jones, & T. S. H. Teo (Eds.), PACIS 2015 Proceedings (pp. 247-263).
  • Hsieh, P.-J., Lai, H.-M., y Ye, Y. (2014). Patients' acceptance and resistance toward the health cloud: An integration of technology acceptance and status quo bias perspectives. En Proceedings of the 18th Pacific Asia Conference on Information Systems, (PACIS), Chengdou, China (pp. 230-245).
  • Huang, H., Liaw, S., y Lai, C. (2013). Exploring learner acceptance of the use of virtual reality in medical education: A case study of desktop and projection-based display systems. Interactive Learning Environments, 24(1), 3-19. doi:10.1080/10494820.2013.817436
  • Hung, H., y Cho, V. (2008). Continued usage of e-learning communication tools: A study from the learners' perspective in Hong Kong. International Journal of Training and Development, 12(3), 171-187. doi:10.1111/j.14682419.2008.00302.x
  • Islam, A. K. M. N. (2013). Investigating e-learning system usage outcomes in the university context. Computers & Education, 69, 387-399. doi:http://dx.doi.org/10.1016/j.compedu.2013.07.037
  • John, S. P. (2015). The integration of information technology in higher education: A study of faculty's attitude towards IT adoption in the teaching process. Contaduría y Administración, 60 (Supplement 1), 230-252. doi:http://dx.doi.org/10.1016/j.cya.2015.08.004
  • Karahanna, E., Agarwal, R., y Angst, C. M. (2006). Reconceptualizing compatibility beliefs in technology acceptance research. MIS Quarterly, 30(4), 781-804.
  • King, W. R., y He, J. (2006). A meta-analysis of the technology acceptance model.Information & Management, 43(6), 740-755. doi:http://dx.doi.org/10.1016/j.im.2006.05.003
  • Klem, L. (2000). Structural equation modelling. En L. Grimm, y P., Yarnold (Eds.), Reading and understanding multivariate statistics (pp. 227-260). Washington, D.C.: American Psychological Association.
  • Kline, R. B. (2005). Principles and practice of structural equation modelling. New York: Guilford Press.
  • Lee, Y., Hsieh, Y., y Hsu, C. (2011). Adding innovation diffusion theory to the technology acceptance model: Supporting employees' intentions to use E-learning systems. Educational Technology & Society, 14(4), 124-137.
  • Lei, J. (2009). Digital natives as preservice teachers: What technology preparation is needed? Journal of Computing in Teacher Education, 25(3), 87-97.
  • Lewin, K. (1947). Frontiers in group dynamics: Concept, method, and reality in social sciences, social equilibria, and social change. Human Relations, 1(1), 5-41.
  • Liao, H., y Lu, H. (2008). Richness versus parsimony antecedents of technology adoption model for e-learning websites. En F. Li, J. Zhao, T. K. Shih, R. L. Q. Li & D. McLeod (Eds.), Advances in web based learning ICWL 2008 (pp. 8-17). Berlin: Springer.
  • Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., y Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: Una guía práctica, revisada y actualizada. Anales De Psicología, 30(3), 1151-1169.
  • Ma, C., Chao, C., y Cheng, B. (2013). Integrating technology acceptance model and task-technology fit into blended E-learning system. Journal of Applied Sciences, 13(5), 736-742.
  • McDonald, R. P., y Ho, M. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64-82.
  • Mejia, C., y Phelan, K. V. (2014). Academic referent group influences on hospitality students’ intentions to enroll in an online course. Journal of Hospitality & Tourism Education, 26(2), 65-74. doi:10.1080/10963758.2014.900378
  • Moore, G. C., y Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222. doi:10.1287/isre.2.3.192
  • Nov, O., y Schecter, W. (2012). Dispositional resistance to change and hospital physicians' use of electronic medical records: A multidimensional perspective. Journal of the American Society for Information Science and Technology, 63(4), 648-656. doi:10.1002/asi.22602
  • Nov, O., y Ye, C. (2009). Resistance to change and the adoption of digital libraries: An integrative model. Journal of the American Society for Information Science and Technology, 60(8), 1702-1708. doi:10.1002/asi.21068
  • Padilla-Meléndez, A., del Aguila-Obra, A. R., y Garrido-Moreno, A. (2013). Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. Computers & Education, 63, 306-317. doi:http://dx.doi.org/10.1016/j.compedu.2012.12.014
  • Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning. Educational Technology & Society, 12(3), 150-162.
  • Parra-Meroño, M. C., y Carmona-Martínez, M. M. (2011). Las tecnologías de la información y las comunicaciones en la enseñanza superior española. factores explicativos del uso del campus virtual. Estudios Sobre Educación, 20, 73-98.
  • Ramírez-Correa, P., Rondán-Cataluña, F. J., y Arenas-Gaitán, J. (2010). Influencia del género en la percepción y adopción de e-learning: Estudio exploratorio en una universidad chilena. Journal of Technology Management and Innovation, 5(3), 129-141.
  • Rienties, B., Giesbers, B., Lygo-Baker, S., Ma, H. W. S., & Rees, R. (2016). Why some teachers easily learn to use a new virtual learning environment: A technology acceptance perspective. Interactive Learning Environments, 24(3), 539-552. doi:10.1080/10494820.2014.881394
  • Rogers, E. M. (1962). Diffusion of innovations. New York: Free Press of Glencoe.
  • Sánchez-Franco, M. J. (2010). WebCT the quasimoderating effect of perceived affective quality on an extending technology acceptance model. Computers and Education, 54(1), 37-46.
  • Sánchez-Franco, M. J., Martínez-López, F. J., y Martín-Velicia, F. A. (2009). Exploring the impact of individualism and uncertainty avoidance in web-based electronic learning: An empirical analysis in european higher education. Computers and Education, 52(3), 588-598.
  • Sánchez Prieto, J. C., Olmos Migueláñez, S., y García-Peñalvo, F. J. (2014). Understanding mobile learning: Devices, pedagogical implications and research lines. Revista Teoría de la Educación: Educación y Cultura en la Sociedad de la Información, 15(1), 20-42.
  • Sánchez Prieto, J. C., Olmos Migueláñez, S., & García-Peñalvo, F. J. (2016). Informal Tools in Formal Contexts: Development of a Model to Assess the Acceptance of Mobile Technologies among Teachers. Computers in Human Behavior, 55A, 519-528. doi:http://dx.doi.org/10.1016/j.chb.2015.07.002
  • Schoonenboom, J. (2014). Using an adapted, task-level technology acceptance model to explain why instructors in higher education intend to use some learning management system tools more than others. Computers and Education, 71, 247-256.
  • Sebjan, U., y Tominc, P. (2015). Impact of support of teacher and compatibility with needs of study on usefulness of SPSS by students. Computers in Human Behavior, 53, 354-365. doi:http://dx.doi.org/10.1016/j.chb.2015.07.022
  • Stols, G., y Kriek, J. (2011). Why don't all maths teachers use dynamic geometry software in their classrooms? Australasian Journal of Educational Technology, 27(1), 137-151.
  • Sun, Y., Bhattacherjee, A., y Ma, Q. (2009). Extending technology usage to work settings: The role of perceived work compatibility in ERP implementation. Information & Management, 46(6), 351-356. doi:http://dx.doi.org/10.1016/j.im.2009.06.003
  • Teo, T. (2012). Examining the intention to use technology among pre-service teachers: An integration of the technology acceptance model and theory of planned behavior. Interactive Learning Environments, 20(1), 3-18. doi:10.1080/10494821003714632
  • Teo, T., Lee, C. B., Chai, C. S., y Wong, S. L. (2009). Assessing the intention to use technology among pre-service teachers in singapore and malaysia: A multigroup invariance analysis of the technology acceptance model (TAM). Computers & Education, 53(3), 1000-1009. doi:http://dx.doi.org/10.1016/j.compedu.2009.05.017
  • Teo, T., y Noyes, J. (2011). An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers & Education, 57(2), 1645-1653. doi:http://dx.doi.org/10.1016/j.compedu.2011.03.002
  • Tornatzky, L. G., y Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions On Engineering Management, EM-29(1), 28-45. doi:10.1109/TEM.1982.6447463
  • Valtonen, T., Kukkonen, J., Kontkanen, S., Sormunen, K., Dillon, P., y Sointu, E. (2015). The impact of authentic learning experiences with ICT on pre-service teachers' intentions to use ICT for teaching and learning. Computers & Education, 81, 49-58. doi:http://dx.doi.org/10.1016/j.compedu.2014.09.008
  • Venkatesh, V., y Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
  • Venkatesh, V., y Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. doi:10.1111/j.15405915.2008.00192.x
  • Venter, P., van Rensburg, M. J., y Davis, A. (2012). Drivers of learning management system use in a south african open and distance learning institution. Australasian Journal of Educational Technology, 28(2), 183-198.
  • Wang, W., y Wang, C. (2009). An empirical study of instructor adoption of web-based learning systems. Computers & Education, 53(3), 761-774. doi:http://dx.doi.org/10.1016/j.compedu.2009.02.021
  • Wu, C., y Liu, C. (2013). Acceptance of ICT-mediated teaching/learning systems for elementary school teachers: Moderating effect of cognitive styles. Education and Information Technologies, 20(2), 381-401. doi:10.1007/s10639-013-9290-8
  • Zhang, W., y Xu, P. (2011). Do I have to learn something new? mental models and the acceptance of replacement technologies. Behaviour & Information Technology, 30(2), 201-211. doi:10.1080/0144929X.2010.489665