Robótica para desarrollar el pensamiento computacional en Educación Infantil

  1. Ana García-Valcárcel Muñoz-Repiso 1
  2. Yen-Air Caballero-González 2
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 Universidad Tecnológica de Panamá
    info

    Universidad Tecnológica de Panamá

    Panamá, Panamá

    ROR https://ror.org/030ve2c48

Revista:
Comunicar: Revista Científica de Comunicación y Educación

ISSN: 1134-3478

Año de publicación: 2019

Título del ejemplar: Medios móviles emergentes. Convergencia comunicativa en el nuevo escenario mediático

Número: 59

Páginas: 63-72

Tipo: Artículo

DOI: 10.3916/C59-2019-06 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Comunicar: Revista Científica de Comunicación y Educación

Resumen

Actualmente se promueve el desarrollo de habilidades de programación desde una edad escolar temprana, tratando de que los niños adquieran un rol activo y creativo en el uso de las tecnologías. El objetivo de este trabajo es comprobar la repercusión del desarrollo de actividades de robótica educativa en la adquisición de habilidades de pensamiento computacional y programación en escolares de educación infantil. El diseño de la investigación es de tipo cuasi-experimental, con medidas pretest y postest, utilizando grupo experimental y control. La muestra la conforman 131 estudiantes del segundo ciclo de educación infantil (entre 3 y 6 años de edad) de un centro educativo español. El pensamiento computacional se mide a través de tres dimensiones: secuencias (algoritmos), correspondencia acción-instrucción y depuración. Las sesiones de intervención, así como la estructura de los retos que se utilizaron en las evaluaciones pre y postest fueron diseñadas tomando como base el programa de estudios en robótica denominado «TangibleK». La intervención, centrada en actividades de aprendizaje mediante recursos de robótica educativa, presenta resultados positivos en relación a las habilidades de pensamiento computacional logradas. Las diferencias encontradas entre el pre y postest en el grupo experimental son estadísticamente significativas y superiores a las presentadas en el grupo control, de modo que se concluye que los niños que realizan el programa de robótica consiguen un mayor avance en las tres dimensiones de la competencia computacional.

Información de financiación

Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT) e Instituto para la Formación y Aprovechamiento de los Recursos Humanos (IFARHU) de la República de Panamá.

Referencias bibliográficas

  • Alsina, A., & Acosta, Y. (2018). Iniciación al álgebra en Educación Infantil a través del pensamiento computacional: Una experiencia sobre patrones con robots educativos programables. Revista Iberoamericana de Educación Matemática, 52, 218-235. https://bit.ly/2PC1hLt
  • Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking: A digital age skill for everyone. Learning and Leading with Technology, 38(6), 20-23.
  • Berrocoso, J., Sánchez, M., & Arroyo, M. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje. Red, 46, 1-18. https://doi.org/10.6018/red/46/3
  • Bers, M.U. (2010). The TangibleK Robotics program: Applied computational thinking for young children. Early Childhood Research & Practice, 12(2). https://bit.ly/2RZ3B11
  • Bers, M.U., Flannery, L., Kazakoff, E.R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. https://doi.org/10.1016/j.compedu.2013.10.020
  • Bravo, F.A., & Forero, A. (2012). La robótica como un recurso para facilitar el aprendizaje y desarrollo de competencias generales. Teoría de la Educación. 13(2), 120-136. https://bit.ly/2EtOVnJ
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association (AERA) (pp. 1-25), Vancouver, Canada.
  • Bruni, F., & Nisdeo, M. (2017). Educational robots and children’s imagery: A preliminary investigation in the first year of primary school. Research on Education and Media, 9(1), 37-44. https://doi.org/10.1515/rem-2017-0007
  • Buitrago, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing a generation’s way of thinking: Teaching computational thinking through programming. Review of Educational Research, 87(4), 834-860. https://doi.org/10.3102/0034654317710096
  • Buss, A., & Gamboa, R. (2017). Teacher transformations in developing computational thinking: Gaming and robotics use in after-school settings. In P.J. Rich & C.B. Hodges (Eds.), Emerging research, practice, and policy on computational thinking (pp. 189-203). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-52691-1_12
  • Caballero, Y.A., & García-Valcárcel, A. (2017). Development of computational thinking skills and collaborative learning in initial education students through educational activities supported by ICT resources and programmable educational robots. In F.J. García-Peñalvo (Ed.), Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality (p. 103). New York: ACM. https://doi.org/10.1145/3144826.3145450
  • Campbell, D., & Stanley, J. (1993). Disen?os experimentales y cuasiexperimentales en la investigacio?n social. Buenos Aires: Amorrortu.
  • Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M.M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers and Education, 109, 162-175. https://doi.org/10.1016/j.compedu.2017.03.001
  • Durak, H.Y., & Saritepeci, M. (2018). Analysis of the relation between computational thinking skills and various variables with the structural equation model. Computers & Education, 116, 191-202. https://doi.org/10.1016/j.compedu.2017.09.004
  • Elkin, M., Sullivan, A., & Bers, M.U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom. Journal of Information Technology Education: Innovations in Practice, 13, 153-169. https://doi.org/10.28945/2094
  • García-Peñalvo, F.J., Rees, A.M., Hughes, J., Jormanainen, I., Toivonen, T., & Vermeersch, J. (2016). A survey of resources for introducing coding into schools. Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’16) (pp.19-26). Salamanca, Spain, November 2-4, 2016. New York: ACM. https://doi.org/10.1145/3012430.3012491
  • García-Valcárcel, A., & Tejedor, F.J. (2017). Percepción de los estudiantes sobre el valor de las TIC en sus estrategias de aprendizaje y su relación con el rendimiento. Educación XX1, 20(2), 137-159. https://doi.org/10.5944/educxx1.19035
  • Goodgame, C. (2018). Beebots and Tiny Tots. In E. Langran, & J. Borup (Eds.). Society for Information Technology & Teacher Education International Conference (pp. 1179-1183). Association for the Advancement of Computing in Education (AACE).
  • Hernández-Sampieri, R., Fernández-Collado. C., & Baptista-Lucio. P. (2014). Metodología de la investigación. México: McGraw-Hill Education.
  • Kandlhofer, M., & Steinbauer, G. (2016). Evaluating the impact of educational robotics on pupils’ technical-and social-skills and science related attitudes. Robotics and Autonomous Systems, 75, 679685. https://doi.org/10.1016/j.robot.2015.09.007
  • Karampinis, T. (2018). Robotics-based learning interventions and experiences from our implementations in the RobESL framework. International Journal of Smart Education and Urban Society, 9(1), 13-24. https://doi.org/10.4018/ijseus.2018010102
  • Koning, J.I., Faber, H.H., & Wierdsma, M.D. (2017). Introducing computational thinking to 5 and 6 years old students in dutch primary schools: An educational design research study. In C. Suero, & M. Joy (Eds.), Proceedings of the 17th Koli Calling Conference on Computing Education Research Calling Conference on Computing Education Research (pp. 189-190). New York: ACM. https://doi.org/10.1145/3141880.3141908
  • Kucuk, S., & Sisman, B. (2017). Behavioral patterns of elementary students and teachers in one-to-one robotics instruction. Computers & Education, 111, 31-43. https://doi.org/10.1016/j.compedu.2017.04.002
  • Lee, K.T., Sullivan, A., & Bers, M.U. (2013). Collaboration by design: Using robotics to foster social interaction in kindergarten. Computers in the Schools, 30(3), 271-281. https://doi.org/10.1080/07380569.2013.805676
  • Liu, H.P., Perera, S.M., & Klein, J.W. (2017). Using model-based learning to promote computational thinking education. In P.J. Rich, & C.B. Hodges (Eds.), Emerging research, practice, and policy on computational thinking (pp. 153-172). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-52691-1_10
  • Moro, M., Agatolio, F., & Menegatti, E. (2018). The RoboESL Project: Development, evaluation and outcomes regarding the proposed robotic enhanced curricula. International Journal of Smart Education and Urban Society, 9(1), 48-60. https://doi.org/10.4018/ijseus.2018010105
  • Ozcinar, H., Wong, G., & Ozturk, H.T. (Eds.) (2017). Teaching computational thinking in primary education. USA: IGI Global. https://doi.org/10.4018/978-1-5225-3200-2
  • Pittí, K., Curto-Diego, B., Moreno-Rodilla, V. (2010). Experiencias construccionistas con robótica educativa en el Centro Internacional de Tecnologías Avanzadas. Education in the Knowledge Society, 11(1), 310-329. https://bit.ly/2MNPwls
  • Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. In M. Honey & D.E. Kanter (Eds.), Design, make, play: Growing the next generation of STEM innovators (pp.163-181). New York: Routledge.
  • Schwabe, R.H. (2013). Las tecnologías educativas bajo un paradigma construccionista: un modelo de aprendizaje en el contexto de los nativos digitales. Revista Iberoamericana de Estudos em Educação, 8(3), 738-746. https://doi.org/10.5860/choice.51-1612
  • Seppänen, L., Schaupp, M., & Wahlström, M. (2018). Enhancing learning as theoretical thinking in robotic surgery. Nordic Journal of Vocational Education and Training, 7(2), 84-103. https://doi.org/10.3384/njvet.2242-458x.177284
  • Serholt, S. (2018). Breakdowns in children's interactions with a robotic tutor: A longitudinal study. Computers in Human Behavior, 81, 250-264. https://doi.org/10.1016/j.chb.2017.12.030
  • Tejedor, F.J. (2000). El diseño y los diseños en la evaluación de programas. Revista de Investigación Educativa, 18(2), 319-339.
  • Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  • Wing, J.M. (2008). Computational thinking and thinking about computing. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118
  • Wong, G., Jiang, S., & Kong, R. (2018). Computational thinking and multifaceted skills: A qualitative study in primary schools. in teaching computational thinking in primary education (pp. 78-101). USA: IGI Global. https://doi.org/10.4018/978-1-5225-3200-2.ch005
  • Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. RED, 46, 1-47. https://doi.org/10.6018/red/45/4