Determinación del riesgo de inundación en la ciudad de Salamanca (España) mediante análisis de peligrosidad, exposición y vulnerabilidad

  1. Criado, Marco 1
  2. Martínez-Graña, Antonio Miguel 1
  3. Santos-Francés, Fernando 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario

ISSN: 0214-1744

Año de publicación: 2019

Volumen: 33

Número: 1-2

Páginas: 87-102

Tipo: Artículo

DOI: 10.17735/CYG.V33I1-2.70148 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario

Resumen

La población humana está cada vez más expuesta al riesgo de inundación debido al crecimiento de las ciudades, la expansión de las mismas hacia zonas ribereñas y la mayor incidencia de fenómenos climáticos extremos. Simular estos riesgos será útil para desarrollar acciones preventivas de planificación y ordenación de recursos. En el caso que nos ocupa, se establece un proceso de evaluación de la peligrosidad, exposición y vulnerabilidad de la población y de sus bienes respecto a las inundaciones en el río Tormes en Salamanca, a través de HEC-RAS, HEC-GeoRAS y ArcGis. Se estudiaron cuatro escenarios con períodos de retorno de 5, 50, 100 y 500 años de diferente probabilidad de ocurrencia e intensidad. Se calcularon los caudales de cada periodo, con la extensión, velocidad y profundidad del agua en cada evento, obteniéndose de la profundidad y de la velocidad la peligrosidad. Respecto a la exposición, se identifican las infraestructuras y edificaciones que quedarían anegadas en cada caso, cuantificándose su longitud o número, respectivamente. La vulnerabilidad de los edificios e infraestructuras expuestas está determinada por sus características. La conjunción de los tres factores determina el riesgo de inundación existente.

Referencias bibliográficas

  • Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. (2015). Global warming increases the frequency of river floods in Europe. Hydrology and Earth System Sciences, 19, 2247–2260. https://doi.org/10.5194/hess-19-2247-2015
  • Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. (2011). The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Progress in Planning, 75, 53–107. https://doi.org/10.1016/j.progress.2011.04.001
  • Ayala-Carcedo, F. J.; Olcina-Cantos, J. O. (2002). Riesgos naturales. Ariel.
  • Ayala-Carcedo, F. J.; González-Jiménez, Á. G. (2007). Una aproximación al análisis de riesgo. Riesgos naturales y desarrollo sostenible: impacto, predicción y mitigación, IGME (10), 19.
  • Balica, S.F.; Popescu, I.; Beevers, L.; Wright, N.G. (2013). Parametric and physically based modelling techniques for flood risk and vulnerability assessment: A comparison. Environmental Modelling & Software, 41, 84–92. https://doi.org/10.1016/j.envsoft.2012.11.002
  • Chow, V.T.; D.R. Maidment y L.W. Mays (1988). Hidrología aplicada. McGraw-Hill, 584 pp.
  • Costabile, P.; Macchione, F.; Natale, L.; Petaccia, G. (2015). Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach. Natural Hazards, 77, 181–204. https://doi.org/10.1007/s11069-015-1606-0
  • Criado, M.; Martínez-Graña, A.; Santos-Francés, F.; Veleda, S.; Zazo, C. (2017). Multi-Criteria Analyses of Urban Planning for City Expansion: A Case Study of Zamora, Spain. Sustainability, 9, 1850. https://doi.org/10.3390/su9101850
  • Dankers, R.; Feyen, L. (2009). Flood hazard in Europe in an ensemble of regional climate scenarios. Journal of Geophysical Research: Atmospheres, 114, D16. https://doi.org/10.1029/2008JD011523
  • De Moel, H.; Aerts, J.C.; Koomen, E. (2011). Development of flood exposure in the Netherlands during the 20th and 21st century. Global Environmental Change, 21, 620–627. https://doi.org/10.1016/j.gloenvcha.2010.12.005
  • Directiva 60/2007/CE—Comisión europea del Parlamento Europeo: Bruselas, Bélgica, 2007; p. 23.
  • Ernst, J.; Dewals, B.J.; Detrembleur, S.; Archambeau, P.; Erpicum, S.; Pirotton, M. (2010) Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data. Natural Hazards, 55, 181–209. https://doi.org/10.1007/s11069-010-9520-y
  • Fedeski, M.; Gwilliam, J. (2007). Urban sustainability in the presence of flood and geological hazards: The development of a GIS-based vulnerability and risk assessment methodology. Landscape and Urban Planning, 83, 50–61. https://doi.org/10.1016/j.landurbplan.2007.05.012
  • IGN (2018). Instituto Geográfico Nacional. Centro de descargas. Disponible en web (Consultado el 29 de diciembre de 2018): http://centrodedescargas.cnig.es/CentroDescargas/
  • INE (2019). Instituto Nacional de Estadística. Disponible en web (Consultado el 9 de enero de 2019): https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177011&menu=resultados&idp=1254734710990
  • IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R.; Field, C.B.; Dokke, D.J.; Mastrandrea, M.D.; Mach, K.J.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; Girma, B.; Kissel, E.S.; Levy, A.N.; MacCracken, S.; Mastrandrea, P.R.; White, L.L. Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; 688p.
  • Jenkins, K.; Surminski, S.; Hall, J.; Crick, F. (2017). Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. Science of the Total Environment, 595, 159–168. https://doi.org/10.1016/j.scitotenv.2017.03.242
  • Jongman, B.; Hochrainer-Stigler, S.; Feyen, L.; Aerts, J.C.; Mechler, R.; Botzen, W.W.; Bouwer, L.M.; Pflug, G.; Rojas, R.; Ward, P.J. (2014). Increasing stress on disaster-risk finance due to large floods. Nature Climate Change, 4, 264. https://doi.org/10.1038/nclimate2124
  • Khattak, M.S.; Anwar, F.; Saeed, T.U.; Sharif, M.; Sheraz, K.; Ahmed, A. (2016). Floodplain mapping using HEC-RAS and ArcGIS: A case study of Kabul River. Arabian Journal for Science and Engineering, 41, 1375–1390. https://doi.org/10.1007/s13369-015-1915-3
  • Kaźmierczak, A.; Cavan, G. (2011). Surface water flooding risk to urban communities: Analysis of vulnerability, hazard and exposure. Landscape and Urban Planning, 103, 185–197. https://doi.org/10.1016/j.landurbplan.2011.07.008
  • Leskens, J.G.; Brugnach, M.; Hoekstra, A.Y.; Schuurmans, W. (2014). Why are decisions in flood disaster management so poorly supported by information from flood models? Environmental Modelling & Software, 53, 53–61. https://doi.org/10.1016/j.envsoft.2013.11.003
  • Leskens, J.G.; Kehl, C.; Tutenel, T.; Kol, T.; De Haan, G.; Stelling, G.; Eisemann, E. (2017). An interactive simulation and visualization tool for flood analysis usable for practitioners. Mitigation and Adaptation Strategies for Global Change, 22, 307–324. https://doi.org/10.1007/s11027-015-9651-2
  • Macchione, F.; Costabile, P.; Costanzo, C.; De Santis, R. (2019). Moving to 3-D flood hazard maps for enhancing risk communication. Environmental Modelling & Software, 111, 510–522. https://doi.org/10.1016/j.envsoft.2018.11.005
  • Martínez-Graña, A.; Goy, J.L.; De Bustamante, I.; Zazo, C. (2014). Characterization of environmental impact on resources, using strategic assessment of environmental impact and management of natural spaces of “Las Batuecas-Sierra de Francia” and “Quilamas” (Salamanca, Spain). Environmental Earth Sciences, 71, 39–51. https://doi.org/10.1007/s12665-013-2692-5
  • Martínez-Graña, A.; Goy, J.L.; Zazo, C. (2016). Geomorphological applications for susceptibility mapping of landslides in natural parks. Environmental Engineering and Management Journal. Volume 15, Issue 2, 327-338. https://doi.org/10.30638/eemj.2016.033
  • Martínez-Graña, A.; Bajo, I.; González-Delgado, J.A.; Cárdenas-Carretero, J.; Abad, M.; Legoinha, P. (2018). G Virtual 3D Tour Applied to the Paleontological Heritage of the Neogene of Sevilla (Guadalquivir Basin, Spain). Geoheritage. Volume 10, Issue 3, 473-482. https://doi.org/10.1007/s12371-017-0247-y
  • Mustafa, A.; Bruwier, M.; Archambeau, P.; Erpicum, S.; Pirotton, M.; Dewals, B.; Teller, J. (2018). Effects of spatial planning on future flood risks in urban environments. Journal of Environmental Management, 225, 193–204. https://doi.org/10.1016/j.jenvman.2018.07.090
  • Naciones Unidades (2018). Disponible en web (Consultado el 11 de enero de 2019): https://www.un.org/development/desa/es/news/population/2018-world-urbanization-prospects.html
  • Paprotny, D.; Sebastian, A.; Morales-Nápoles, O.; Jonkman, S.N. (2018). Trends in flood losses in Europe over the past 150 years. Nature Communications, 9, 1985. https://doi.org/10.1038/s41467-018-04253-1
  • Pistrika, A. (2010) Flood damage estimation based on flood simulation scenarios and a GIS platform. European Water, 30, 3–11.
  • Rahmati, O.; Zeinivand, H.; Besharat, M. (2016). Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics Natural Hazards & Risk, 7, 1000–1017. https://doi.org/10.1080/19475705.2015.1045043
  • Rojas, R.; Feyen, L.; Bianchi, A.; Dosio, A. (2012). Assessment of future flood hazard in Europe using a large ensemble of bias‐corrected regional climate simulations. Journal of Geophysical Research: Atmospheres, 117, D17. https://doi.org/10.1029/2012JD017461
  • Rufat, S.; Tate, E.; Burton, C.G.; Maroof, A.S. (2015). Social vulnerability to floods: Review of case studies and implications for measurement. International Journal of Disaster Risk Reduction, 14, 470–486. https://doi.org/10.1016/j.ijdrr.2015.09.013
  • Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S. (2015). Integration of 2-D hydraulic model and high-resolution lidar-derived DEM for floodplain flow modeling. Hydrology and Earth System Sciences, 19, 3605–3616. https://doi.org/10.5194/hess-19-3605-2015
  • UNDRO. Mitigating Natural Disasters; Phenomena, Effects and Options United Nations: New York, NY, USA, 1991.
  • UNISDR. Global Assessment Report on Disaster Risk Reduction (2011). Revealing Risk, Redefining Development. Summary and Main Findings; United Nations: New York, NY, USA, 2011.
  • Veleda, S.; Martínez-Graña, A.; Santos-Francés, F.; Sánchez-San Roman, J.; Criado, M. (2017). Analysis of the Hazard, Vulnerability and Exposure to the Risk of Flooding (Alba de Yeltes, Salamanca, Spain). Applied Sciences, 7, 157. https://doi.org/10.3390/app7020157
  • Viessman, W.;Lewis, G.L. (2003). Introduction to Hydrology. Prentice-Hall, 612 pp.
  • Vormoor, K.; Lawrence, D.; Schlichting, L.; Wilson, D.; Wong, W.K. (2016). Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. Journal of Hydrology, 538, 33–48. https://doi.org/10.1016/j.jhydrol.2016.03.066
  • Wallemacq, P.;Rowena, H. (2018). Economic losses, poverty and disasters (1998-2017). United Nations Office for Disaster Risk Reduction (UNISDR) and Centre for Research on the Epidemiology of Disasters (CRED). 31 p.
  • Winsemius, H.C.; Aerts, J.C.; Van Beek, L.P.; Bierkens, M.F.; Bouwman, A.; Jongman, B.; Ward, P.J. (2016). Global drivers of future river flood risk. Nature Climate Change, 6, 381. https://doi.org/10.1038/nclimate2893
  • Zachos, L.G.; Swann, C.T.; Altinakar, M.S.; McGrath, M.Z.; Thomas, D. (2016). Flood vulnerability indices and emergency management planning in the Yazoo Basin, Mississippi. International Journal of Disaster Risk Reduction, 18, 89–99. https://doi.org/10.1016/j.ijdrr.2016.03.012