Late-Variscan multistage hydrothermal processes unveiled by chemical ages coupled with compositional and textural uraninite variations in W-Au deposits in the western Spanish Central System Batholith

  1. Susana Timón Sánchez
  2. Francisco Javier López Moro
  3. R.L. Romer
  4. D. Rhede 1
  5. Agustina Fernández Fernández
  6. María Candelas Moro Benito
  1. 1 Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences
    info

    Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences

    Potsdam, Alemania

    ROR https://ror.org/04z8jg394

Journal:
Geologica acta: an international earth science journal

ISSN: 1695-6133

Year of publication: 2019

Volume: 17

Issue: 1

Type: Article

DOI: 10.1344/GEOLOGICAACTA2019.17.1 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Geologica acta: an international earth science journal

Sustainable development goals

Abstract

The scheelite skarn from Los Santos and the W-Au veins from El Cabaco district, located in the Spanish Central System Batholith (SCSB), are some of the best-known tungsten ore deposits in Spain. Uraninite is an accessory mineral in both deposits, which underwent several hydrothermal flow events. Chemical and textural characteristics as well as electron microprobe U-Th-Pb uraninite chemical data from the different stages of the skarn and the vein-type mineralizations are presented here. Based on these data the uraninite was able to be classified into two groups. Group I uraninite has an octahedral habit and occurs as inclusions in K-feldspar relicts of the leucogranite related to Los Santos skarn formation. It shows high Th (6.95 to 8.51wt.% ThO2) and high Rare Earth Elements (REEs) contents (0.55 to 1.38wt.% ΣREE2O3). Group II uraninite occurs i) associated to El Cabaco granite, in a greenish selvage-style greisen and its reddish envelope and in the mineralized rimming quartz veins and ii) in Los Santos high temperature endoskarn and anorthite skarn, where it is associated with U-rich mica. This uraninite type has lower Th and ΣREE2O3 contents than Group-I uraninite. The mineral chemistry and the assemblage and textural relationships suggest that Group-I uraninite is magmatic and the attained U-Th- Pb chemical age of 300±4Ma is interpreted as the magmatic age of the skarn-forming aplite granites in the western part of the SCSB. Group-II uraninite includes two events: i) a hydrothermal uraninite, which yields an age of 295±2Ma, dates a strong-alkali mobilization and early tungsten deposition and ii) a later hydrothermal processes, around 287±4Ma, that resulted in sulfides and late scheelite precipitation and widespread silicification. Finally, the gold deposition is younger than this silicification according to textural criteria. Therefore, W-Au deposits in the western part of the SCSB were formed by superposition of several processes that took place some 15Ma after the skarn-forming granite crystallized. Comparable W, W-Au and U deposits in the Variscan orogenic belt show a similar timing of hydrothermal events, suggesting that the hydrothermal history was controlled by large-scale Late-Variscan tectonic processes.

Funding information

Castilla y León (Research Projects SA 073/01 and SA015A06) and FEDER program (1FD97-0235). We thank Uwe Dittmann (GFZ) for excellent polished sections from this highly porous material.

Bibliographic References

  • Alexandre, P., Kyser, T.K., 2005. Effects of cationic substitutions and alteration in uraninite, and implications for the dating of uranium deposits. The Canadian Mineralogist, 43(3), 1005-1017.
  • Antona, F.J., 1991. Fluidos mineralizadores en los yacimientos de oro de Saucelle y El Cabaco (Salamanca). PhD Thesis. University of Salamanca, unpublished, 236pp.
  • Antona, F.J., Fallick, A.E., García Sánchez, A., 1994. Source of fluids in the auriferous El Cabaco mineralized zone, southern
  • Salamanca. International Geology Review, 36(7), 687-702.
  • Armstrong, J.T., 1995. CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of
  • thick polished materials, thin films, and particles. Microbeam Analysis, 4(3), 177-200.
  • Basham, I.R., Easterbrook, G.D., 1977. Alpha-particle autoradiography of geological specimens by use of cellulose nitrate detectors. Transactions of the Institution of Mininig and Metallurgy, Section B, B86, 96-98.
  • Basham, I.R., 1981. Some application of autoradiography in textural analysis of uranium bearing samples; discussion. Economic Geology, 76(4), 974-982.
  • Bea, F., Montero, P., Molina, J.F., 1999. Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila Batolith: a model for the generation of Variscan batoliths in Iberia. The Journal of Geology, 107(4), 399-419.
  • Bea, F., Villaseca, C., Bellido, F., 2004. El Batolito de Ávila (Sistema Central Español).In: Vera, J.A. (ed.). Geología de España. Sociedad Geológica Española-Instituto Geológico y Minero de España, Madrid, 101-110.
  • Bowles, J.F.W., 1990. Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chemical Geology, 83(1-2), 47-53.
  • Bril, H., Bonhomme, M.G., Marcoux, E., Baubron, J.C., 1991. Ages K/Ar des minéralisations de Brioude-Massiac (W-Au-AsSb; Pb-Zn), Pontgibaud (Pb-Ag; Sn), et Labessette (As-Pb-SbAu): Place de ces districts dans l’évolution géotectonique du Massif central français. Mineralium Deposita, 26(3), 189-198.
  • Caballero, J.M., Casquet, C., Galindo, C., González-Casado, J.M., Snelling, N., Tornos, F., 1992. Dating hydrothermal events in the Sierra de Guadarrama, Iberian Hercynian Belt, Spain. Geogaceta, 11, 18-22.
  • Caballero, J.M., Casquet, C., Galindo, C., González-Casado, J.M., Pankhurst, R., Tornos, F., 1993. Geocronología por el método Rb-Sr de las episienitas de la Sierra de Guadarrama. Geogaceta, 13, 16-18.
  • Caballero, J.M., González-Casado, J. M., Casquet, C., Galindo, C., Tornos, F., 1996. Episienitas de la Sierra de Guadarrama: un
  • proceso hidrotermal regional de edad Pérmico Inferior ligado al inicio de la extensión alpina. Cuadernos de Geología Ibérica, 20, 183-201.
  • Carnicero, A. (coord.), 1983. Síntesis geológica del Basamento (Zona del centro-oeste español). 1:200,000. Salamanca, Department of Petrology, University of Salamanca.
  • Casquet, C., Tornos, F., 1984. El skarn de W–Sn del Carro del Diablo (Sistema Central Español). Boletín Geológico y Minero de España, 95(1), 58-79.
  • Cathelineau, M., Boiron, M.C., Fourcade, S., Ruffet, G., Clauer, N., Belcourt, O., Coulibaly, Y., Banks, D.A., Guillocheau, F., 2012. A major Late Jurassic fluid event at the basin/basement unconformity in western France: 40Ar/39Ar and K–Ar dating, fluid chemistry, and related geodynamic context. Chemical Geology, 322-323, 99-120.
  • Chen, Y., Clark, A.H., Farrar, E., Wasteneys, H.A.H.P., Hodgson, M.J., Bromley, A.V., 1993. Diachronous and independent histories of plutonism and mineralization in the Cornubian Batholith, southwest England. London, Journal of Geological Society, 150, 1183-1191.
  • Chen, Y., Zentilli, M.A., Clark, A.H., Farrar, E., Grist, A.M., Willis-Richard, J., 1996. Geochronological evidence for postvariscan cooling and uplift of the Carnmenellis granite, SW England. London, Journal of Geological Society, 153, 191-195.
  • Chesley, J.T., Halliday, A.N., Snee, L.W., Mezger, K., Sheperd, T.J., Scrivener, R.C., 1993. Thermochronology of the Cornubian Batholith in southwest England: implications for pluton emplacement and protracted hydrothermal mineralization. Geochimica et Cosmochimica Acta, 57(8), 1817-1835.
  • Chicharro, E., Boiron, M.C., López-García, J.A., Barfod, D.N., Villaseca, C., 2016. Origin, ore forming fluid evolution and timing of the Logrosán Sn-(W) ore deposits (Central Iberian Zone, Spain). Ore Geology Reviews, 72, 896-913.
  • Cuney, M., Alexandrov, P., Carlier, L., de Veslud, C., Cheillez, A., Raimbault, L., Ruffet, G., Scaillet, S., 2002. The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France). The Journal of the Geological Society of London, 204 (Special Publications), 213-228.
  • Darbyshire, D.P.F., Shepherd, T.J., 1985. Chronology of granite magmatism and associated mineralization, SW England. The
  • Journal of the Geological Society of London, 142, 1159-1177.
  • Díaz-Alvarado, J., Fernández, C., Castro, A., Moreno-Ventas, I., 2013. SHRIMP U-Pb zircon geochronology and thermal modeling of multilayer granitoid intrusions: Implications for the building and thermal evolution of the Central System batholith, Iberian Massif, Spain. Lithos, 175-176, 104-123.
  • Díez Balda, M.A., 1980. La sucesión del Complejo-esquistograuváquico al Sur de Salamanca. Estudios Geológicos, 36(1-2), 131-138.
  • Díez Balda, M.A., 1986. El Complejo Esquisto-Grauváquico, las series paleozoicas y la estructura hercínica al sur de Salamanca. Acta Salmanticensia, Serie Ciencias, 52, 162pp.
  • Díez Montes, A., 2007. La Geología del Dominio “Ollo de Sapo” en las comarcas de Sanabria y Terra do Bolo. A Coruña, Nova Terra 34, Instituto universitario de geología “Isidro Parga Pondal”, Área de xeoloxía e minería do seminario de estudos galegos, 494pp.
  • Fernández-Suárez, J., Gutiérrez-Alonso, G., Cox, R., Jenner, G.A., 2002. Assembly of the Armorica microplate: a strikeslip terrane delivery? Evidence from U-Pb ages of detrital zircons. The Journal of Geology, 110(5), 619-626.
  • Finch, R.J., Ewing, R.C., 1992. The corrosion of uraninite under oxidizing conditions. Journal of Nuclear Materials, 190, 133-156.
  • Finch, R.J., Murakami, T., 1999. Systematics and paragenesis of uranium minerals. In: Burns, P.C., Finch, R. (eds.). Uranium: mineralogy, geochemistry and the environment. Reviews in Mineralogy and Geochemistry, Chantilly (Virginia), Mineralogical Society of America, 91-180.
  • Finger, F., Waitzinger, M., Förster, H.-J., Kozlik, M., Raith, J.G., 2017. Identification of discrete low-temperature thermal events in polymetamorphic basement rocks using high spatial resolution FE-SEM-EDX U-Th-Pb dating of uraninite microcrystals. Geology, 45(11), 991-994.
  • Förster, B., Haack, U., 1995. U/Pb-Datierungen von Pechblenden und die hydrothermale Entwicklung der U-Lagerstätte Aue-Niederschlema (Erzgebirge). Zeitschrift für Geologische Wissenschaften, 23, 581-588.
  • Förster, H.-J., 1999. The chemical composition of uraninite in Variscan granites of the Erzgebirge, Germany. Mineralogical Magazine, 63(2), 239-252.
  • Förster, H.-J., Tischendorf, G., Trumbull, R.B., Gottesmann, B., 1999. Late-collisional granites in the Variscan Erzgebirge (Germany). Journal of Petrology, 40(11), 1613-1645.
  • Förster, H.-J., Rhede, D., Stein, H.J., Romer, R.L., Tischendorf, G., 2012. Paired uraninite and molybdenite dating of the Königshain granite: Implications for the onset of lateVariscan magmatism in the Lausitz block. International Journal of Earth Science, 101(1), 57-67.
  • Frimmel, H.E., Schedel, S., Brätz, H., 2014. Uraninite chemistry as forensic tool for provenance analysis. Applied Geochemistry, 48, 104-121.
  • Galindo, C., Tornos, F., Darbyshire, D.P.F., 1994. The age and origin of the barite-fluorite (Pb-Zn) veins of the Sierra de Guadarrama (Spanish Central System, Spain): a radiogenic (Nd, Sr) and stable isotope study. Chemical Geology, 112(3-4), 351-364.
  • González Casado, J.M., Caballero, J.M., Casquet, C., Galindo, C., Tornos, F., 1996. Palaeostress and geotectonic interpretation of the Alpine Cycle onset in the Sierra del Guadarrama (eastern Iberian Central System), based on evidence from episyenites. Tectonophysiscs, 262(1-4), 213-229.
  • González-Sánchez, M., 2003. Las mineralizaciones de W-As-Au de El Cabaco (Salamanca). Paragénesis, microtermometría
  • y microsonda Raman. Master Thesis. University of Salamanca, unpublished, 100pp.
  • Gutiérrez-Alonso, G., Fernández-Suárez, J., Collins, A.S., Abad, I., Nieto, E., 2005. Amazonian Mesoproterozoic basement in the core of the Ibero-Armorican Arc: 40Ar/39Ar detrital mica ages complement the zircon’s tale. Geology, 33(8), 637-640.
  • Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T.E., Johnston, S.T., Pastor-Galán, D., Murphy, J.B., Franco, M.P., Gonzalo, J.C., 2011. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics, 30(5), 17.
  • Harlaux, M., Romer, R.L., Mercadier, J., Morlot, C., Marignac, C., Cuney, M., 2018. 40 Ma years of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite.
  • Mineralium Deposita, 53(1), 21-51.
  • Hazen, R.M., Ewing, R.C., Sverjensky, D.A., 2009. Evolution of uranium and thorium minerals. American Mineralogist, 94(10), 1293-1311.
  • Janeczek, J., Ewing, R.C., 1992. Structural formula of uraninite. Journal of Nuclear Materials, 190(2), 128-132.
  • Junta de Castilla y León, 1986. Estudio geológico-minero en el área de la Peña de Francia-Miranda del Castañar (Salamanca). Consejería de Industria, Energía y Trabajo, 188pp+appendices.
  • Kempe, U., 2003. Precise electron microprobe age determination in altered uraninite: consequences on the intrusion age and the metallogenic significance of the Kirchberg granite (Erzgebirge, Germany). Contributions to Mineralogy and Petrology, 145(1), 107-118.
  • Kempe, U., Bombach, K., Matukov, D., Schlothauer, T., Hutschenreuter, J., Wolf, D., Sergeev, S., 2004. Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a timer marker for Hercynian granite magmatism and Sn mineralization in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. Mineralium Deposita, 39(5-6), 646-669.
  • Keppler, H., Wyllie, P.J., 1990. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature, 348(6301), 531-533.
  • Kroner, U., Roscher, M., Romer, R.L., 2016. Ancient plate kinematics derived from the deformation pattern of continental crust: Paleo- and Neo-Tethys opening coeval with prolonged Gondwana-Laurussia convergence. Tectonophysics, 681, 220-233.
  • López-Moro, F.J., Moro-Benito, M.C., Timón-Sánchez, S.M., 2007. Geochronology of gold deposits associated with Variscan granitoids in central west Iberia. In: Andrew, C.J., Borg, G. (eds.). Digging Deeper: Ninth Biennal Meeting of the Society for Geology Applied to Mineral Deposits. Dublin (Ireland), 20th-23rd August 2007, Proceedings, Irish Association for Economic Geology, 1, 385-388.
  • López-Moro, F.J., Moro, M.C., Timón, S.M., Cembranos, M.L., Cózar, J., 2013. Constraints regarding gold deposition in episyenites: the Permian episyenites associated with the Villalcampo Shear Zone, central western Spain. International Journal of Earth Sciences, 102(3), 721-744.
  • López-Moro, F.J., Romer, R.L., López-Plaza, M., González, M., 2017. Zircon and allanite U-Pb ID-TIMS ages of vaugnerites from the Calzadilla Pluton, Salamanca (Spain): Dating mantle-derived magmatism and post-magmatic subsolidus overprint. Geologica Acta, 15(4), 395-408.
  • Ludwig, K.R., 2003. Isoplot 3.0 - a geochronological toolkit for Microsoft Excel. Special Publication Nº4. Berkeley Geochronology Center, Berkeley, California, 71pp.
  • Marignac, C., Cuney, M., 1999. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan
  • collision belt. Mineralium Deposita, 34(5-6), 472-504.
  • Martín-Crespo, T., Delgado, A., Vindel, E., López-García, J.A., Fabre, C., 2002. The latest Post-Variscan fluids in the Spanish Central System: evidence from fluid inclusión and stable isotope data. Marine and Petroleum Geology, 19(3), 323-337.
  • Martín-Crespo, T., Vindel, E., López-García, J.A., Cardellach, E., 2004. As-(Ag) sulfide veins in the Spanish Central System: further evidence for a hydrothermal event of Permian age. Ore Geology Reviews, 25(3-4), 199-219.
  • Moreno-Ventas, I., Rogers, G., Castro, A., 1995. The role of hybridation in the genesis of Hercynian granitoids in the Gredos Massif, Spain: inferences from Sr-Nd isotopes. Contributions to Mineralogy and Petrology, 120(2), 137-149.
  • Moro Benito, M.C., López-Moro, F.J., Fernández, A., Cembranos, M.L., 2007. Bi-tellurides and sulphosalts in relation with different types of golds from Permian mineralized quartz-veins, El Cabaco area, Spain. In: Andrew, C.J., Borg, G. (eds.). Digging Deeper: Ninth Biennal Meeting of the Society for Geology Applied to Mineral Deposits, Dublin, Ireland 20th–23rd August 2007, Proceedings, Irish Association for Economic Geology, 1, 625-628.
  • Moura, A., Dória, A., Neiva, A.M.R., Gomes, C.L., Creaser, R.A., 2014. Metallogenesis at the Carris W-Mo-Sn deposit (Gerês, Portugal): constraints from fluid inclusions, mineral geochemistry, Re-Os and He-Ar isotopes. Ore Geology Reviews, 56, 73-93.
  • Orejana, D., Villaseca, C., Valverde-Vaquero, P., Belousova, E.A., Armstrong, R.A., 2012. U-Pb geochronology and zircon composition of late Variscan S- and I-type granitoids from the Spanish Central System batolith. International Journal of Earth Science, 101(7), 1789-1815.
  • Pal, D.C., Rhede, D., 2013. Geochemistry and chemical dating of uraninite in the Jaduguda uranium deposit, Singhbhum shear zone India. Implications for uranium mineralization and geochemical evolution of uraninite. Economic Geology, 108(6), 1499-1515.
  • Plant, J.A., Simpson, P.R., Smith, B., Windley, B.F., 1999. Uranium ore deposits-products of radioactive Echo Bay U-NiAg-Cu deposits, North West Territories, Canada.Economic Geology, 68, 635-656.
  • Romer, R.L., Schneider, J.C., Linnemann, U., 2010. PostVariscan deformation and hydrothermal mineralization in Saxo-Thuringia and beyond: a geochronological review. In: Linnemann, U., Romer, R.L. (eds.). Pre- Mesozoic Geology of Saxo-Thuringia – From the Cadomian Active Margin to the Variscan Orogen, Schweizerbart,Stuttgart, 347-360.
  • Romer, R.L., Thomas, R., Stein, H.J., Rhede, D., 2007. Dating multiply overprinted Sn-mineralized granites–examples form the Erzgebirge, Germany. Mineralium Deposita, 42(4), 337-359.
  • Romer, R.L., Kroner, U., 2016. Phanerozoic tin and tungsten mineralization-Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31, 60-95.
  • Steiger, R.H., Jäger, E., 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planetary Science Letters, 36(3), 359-362.
  • Timón, S.M., Moro, M.C., 2007. Fluorine concentration in fluids related to the Los Santos scheelite skarn deposit (NW Spain).In: Andrew, C.J., Borg, G. (eds.). Digging Deeper: Ninth Biennal Meeting of the Society for Geology Applied to Mineral Deposits, Dublin, Ireland 20th-23rd August 2007, Proceedings, Irish Association for Economic Geology, 1, 443-446.
  • Timón, S.M., Moro, M.C., Cembranos, M.L., Fernández, A., Crespo, J.L., 2007. Contact metamorphism in the Los Santos W skarn (NW Spain). Mineralogy and Petrology, 90(1-2), 109-140.
  • Timón, S.M., 2008. El skarn de scheelita de Los Santos (Salamanca). Química mineral, inclusiones fluidas e isótopos estables. Doctoral Thesis. Universidad de Salamanca, 396pp.
  • Timón, S.M., Moro, M.C., Cembranos, M.L., 2009. Mineralogical and physiochemical evolution of the Los Santos scheelite skarn, Salamanca, NW Spain. Economic Geology, 104(7), 961-995.
  • Tornos, F., Casquet, C., Caballero, J.M., 1993. La alteración hidrotermal asociada al Plutón epizonal de Navalcubilla, Sierra de Guadarrama (Sistema Central Español). Revista de la Sociedad Geológica de España, 6(1-2), 67-84.
  • Tornos, F., Delgado, A., Casquet, C., Galindo, C., 2000. 300 Million years of episodic hydrothermal activity: stable isotope evidence from hydrothermal rocks of the Eastern Iberian Central System. Mineralium Deposita, 35(6), 551- 569.
  • Tornos, F., Galindo, C., Crespo, J.L., Spiro, B.F., 2008. Geochemistry and origin of calcic tungsten-bearing skarns, Los Santos, Central Iberian Zone, Spain. The Canadian Mineralogist, 46(1), 87-109.
  • Ugidos, J.M., Rodríguez Alonso, M.D., Albert Colomert, V., Martín Herrero, D., 1990. Explanatory notes of sheet 552 (12-22) (Miranda del Castañar), Geologic map of Spain, 1:50,000. Madrid, Instituto Geológico y Minero de España, 77pp.
  • Valle Aguado, B., Azevedo, M.R., Schaltegger, U., Martínez Catalán, J.R., Nolan, J., 2005. U-Pb zircon and monazite geochronology of Variscan magmatism related to synconvergence extension in Central Northern Portugal. Lithos, 82(1-2), 169-184.
  • Villa, I.M., De Bière, P., Holden, N.E. Renne, P.R., 2015. IUPACIUGS recommendation on the half-life of 87R. Geochimica et Cosmochimica Acta, 164(1), 382-385.
  • Vindel, E., López, J.A., Boiron, M.C., Cathelineau, M., Prieto, A.C., 1995. P-V-T-X-fO2 evolution from wolframite to sulfides
  • depositional stages in intragranite W-veins. An example from the Spanish Central System. European Journal of Mineralogy,
  • (3), 655-673.
  • Vindel, E., López, J.A., Martín-Crespo, T., García, E., 2000. Fluid evolution and hydrothermal processes of the Spanish Central
  • System. Journal of Geochemical Exploration, 69-70, 359-362.
  • Votyakov, S.L., Khiller, V.V., Shchapova, Y.V., Erokin, Y.V., 2013. Composition and chemical microprobe dating of U-Th-Bearing minerals. Part 2. Uraninite, thorite, thorianite, coffinite, and monazite from the Urals and Siberia. Geology of Ore Deposits, 55(7), 515-524.
  • Yenes, M., 1996. Estructura, geometría y cinemática del emplazamiento de los granitoides del área de La AlbercaBéjar (Sistema Central Español, Zona Centro Ibérica). PhD Thesis. University of Salamanca, unpublished, 229pp.
  • Yenes, M., Álvarez, F., Gutiérrez-Alonso, G., 1999. Granite emplacement in orogenic compressional conditions: the La Alberca-Béjar granitic area (Spanish Central System, Variscan Iberian Belt). Journal of Structural Geology, 21(10), 1419-1440.
  • Zachariáš, J., Adamović, J., Konečný, P., 2008. The uraninitepyrite association, a sensitive indicator of changes in paleofluid composition: an example from the Ohre (Eger) Graben, Bohemian Massif, Czech Republic. The Canadian Mineralogist, 46(5), 1159-1172.
  • Zeck, H.P., Wingate, M.T.D., Pooley, G.D., 2007. Ion microprobe U-Pb zircon geochronology of a late tectonic granitic-gabbroic rock complex within the Hercynian Iberian belt. Geological Magazine, 144(1), 157-177.