Representaciones de la generalización de una relación funcional y el vínculo con la mediación del entrevistador

  1. Jason Ureña 1
  2. Rafael Ramírez 2
  3. Marta Molina 2
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  2. 2 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Journal for the Study of Education and Development, Infancia y Aprendizaje

ISSN: 0210-3702 1578-4126

Año de publicación: 2019

Título del ejemplar: Pensamiento algebraico temprano : estudios desde diversas perspectivas, enfoques y regiones

Volumen: 42

Número: 3

Páginas: 591-614

Tipo: Artículo

DOI: 10.1080/02103702.2019.1604020 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Journal for the Study of Education and Development, Infancia y Aprendizaje

Objetivos de desarrollo sostenible

Resumen

En este estudio descriptivo se analiza la capacidad de generalizar y de representar generalizaciones exhibida por estudiantes de cuarto grado de primaria. El estudio adopta un diseño experimental basado en una entrevista semiestructurada en torno a una tarea basada en la relación funcional lineal y = x + 2. El papel de la mediación de la entrevistadora en las representaciones de las generalizaciones realizadas por los estudiantes se determina en función de las interacciones de los estudiantes con ella. Se definen cuatro formas de representación de la generalización de una relación funcional. Los resultados confirman la importancia de la mediación para ayudar a los estudiantes a mejorar su capacidad de reconocer, representar y generalizar las relaciones funcionales.

Información de financiación

Financiadores

Referencias bibliográficas

  • Blanton, M. (2008). Algebra and the elementary classroom. Transforming thinking to practice. Portsmouth, NH: Heinemann.
  • Blanton, M., Brizuela, B., Gardiner, A., Sawrey, K., & Newman-Owens, A. (2015). A learning trajectory in 6-year-old’s thinking about generalizing functional relationships. Journal for Research in Mathematics Education, 46, 511–558.
  • Blanton, M., & Kaput, J. (2004). Elementary grades student´s capacity for functional thinking. In M. Hoines, & A. Fugslestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 135–142). Bergen: PME.
  • Blanton, M., & Kaput, J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai, & E. Knuth (Eds.), Early Algebraization: A Global Dialogue from Multiple Perspectives (pp. 5–23). New York, NY: Springer.
  • Blanton, M., Levi, L., Crites, T., & Dougherty, B. J. (Eds.). (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. Reston, VA: NCTM.
  • Cañadas, M. C., & Molina, M. (2016). Una aproximación al marco conceptual y principales antecedentes del pensamiento funcional en las primeras edades [Approach to the conceptual framework and background of functional thinking in early years]. In E. Castro, E. Castro, J. L. Lupiáñez, J. F. Ruíz, & M. Torralbo (Eds.), Investigación en Educación Matemática. Homenaje a Luis Rico (pp. 209–218). Granada: Comares.
  • Carraher, D., Martínez, M., & Schliemann, A. (2008). Early Algebra and mathematical generalization. ZDM Mathematics Education, 40, 3–22.
  • Carraher, D., Schliemann, A. D., & Brizuela, B. (2003). Treating operations as functions. Paper presented at the Psychology of Mathematics Education - NA XXII, Tucson, AZ.
  • Castro, E., Cañadas, M. C., & Molina, M. (2010). El razonamiento inductivo como generador de conocimiento matemático [Inductive reasoning as a generator of mathematical knowledge]. UNO, 54, 55–67.
  • Hitt, F., & González-Martín, A. S. (2016). Generalization, covariation, functions, and calculus. In Á. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The Second Handbook of Research on the Psychology of Mathematics Education (pp. 3–38). Rotterdam: SensePublishers.
  • Kaput, J. (2008). What is algebra? What is algebraic reasoning? In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 5–17). New York, NY: Lawrence Erlbaum Associates
  • Mason, J., Graham, A., & Johnston-Wilder, S. (2005). Developing thinking in algebra. London: The Open University and Paul Chapman Publishing.
  • Mason, J., Graham, A., Pimm, D., & Gowar, N. (1985). Routes to roots of algebra. Milton Keynes: The Open University Press.
  • Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational Studies in Mathematics, 15, 277–287.
  • Mata-Pereira, J., & Da Ponte, J.-P. (2017). Enhancing students’ mathematical reasoning in the classroom: Teacher actions facilitating generalization and justification. Educational Studies in Mathematics, 96, 169–186.
  • McEldoon, K. L., & Rittle-Johnson, B. (2010). Assessing elementary students’ functional thinking skills: The case of function tables. In P. Brosnan, D. B. Erchick, & L. Flevares (Eds.), Proceedings of the Thirty Second Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education: Optimizing Student Understanding in Mathematics (pp. 202). Columbus, OH: Clearinghouse for Science, Mathematics, and Environmental Education.
  • Merino, E., Cañadas, M. C., & Molina, M. (2013). Uso de representaciones y patrones por alumnos de quinto de educación primaria en una tarea de generalización [Representations and patterns used by fifth grade students in a generalization task]. Edma 0-6, 2(1), 24–40.
  • Ministerio de Educación, Cultura y Deporte. (2014). Real Decreto 126/2014, de 28 de febrero, por el que se establece el currículo básico de la educación primaria (Vol. BOE N°52, pp. 19349–194420) [Royal Decree 126/2014, February 28th, which establishes the basic curriculum of elementary education]. Madrid: Ministerio de Educación, Cultura y Deporte.
  • Molina, M., Ambrose, R., & Del Rio, A. (2018). First encounter with variables by first and third grade spanish students. In C. Kieran (Ed.), Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds (pp. 261–280). Hamburg: Springer, Cham.
  • Pinto, E., Cañadas, M.C., Moreno, A., & Castro, E. (2016, September). Relaciones funcionales que evidencian estudiantes de tercero de educación primaria y sistemas de representación que usan [Functional relationships evidenced by third graders and the representation systems they used]. In J. A. Macías, A. Jiménez, J. L. González, M. T. Sánchez, P. Hernández, C. Fernández, & A. Bercian (Eds.), Investigación en Educación Matemática XX (pp. 417–426). Málaga: SEIEM.
  • Polya, G. (1989). ¿Cómo plantear y resolver problemas? [How to solve it?]. Mexico, DF: Trillas.
  • Ponte, J. P., Mata-Pereira, J., & Quaresma, M. (2013). Ações do professor na condução de discussões matemáticas [Teacher actions in the conduction of mathematical debates]. Quadrante, 22(1.a), 55–81.
  • Radford, L. (2001, July). Factual, contextual and symbolic generalization in algebra. In M. van Den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 81–88). Utrecht, Holanda.
  • Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4, 37–62.
  • Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. In C. Kieran (Ed.), Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds (pp. 3–25). Hamburgo: Springer.
  • Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 133–160). New York, NY: Lawrence Erlbaum Associates.
  • Soller, A. (2001). Supporting social interaction in an intelligent collaborative learning system. International Journal of Artificial Intelligence in Education, 12, 40–62.
  • Stephens, A., Ellis, A., Blanton, M. L., & Brizuela, B. M. (2017). Algebraic thinking in the elementary and middle grades. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 386–420). Reston, VA: NCTM.
  • Warren, E. (2006, July). Teacher actions that assist young students write generalizations in words and in symbols. In J. Novotná, M. Krátka, & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 377–384). Praga: PME.
  • Warren, E., Trigueros, M., & Ursini, S. (2016). Research on the learning and teaching of algebra. In Á. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The Second Handbook of Research on the Psychology of Mathematics Education (pp. 73–108). Rotterdam: SensePublishers.