Estudio de la Caspasa-3 en un modelo experimental de precondicionamiento isquémico neuronal en cultivo

  1. LÓPEZ TEJERO, Victoria 1
  2. BOLAÑOS, Juan Pedro 1
  3. DELGADO-ESTEBAN, María 1
  1. 1 Instituto de Investigación Biomédica de Salamanca
    info

    Instituto de Investigación Biomédica de Salamanca

    Salamanca, España

    ROR https://ror.org/03em6xj44

Revista:
Farmajournal

ISSN: 2445-1355

Ano de publicación: 2017

Volume: 2

Número: 1

Páxinas: 121-131

Tipo: Artigo

Outras publicacións en: Farmajournal

Resumo

In humans, tansitory ischemic attacks (TIAs) are the clinical correlate of cerebral ischemic preconditioning (IPC) leading to transient resistance called ischemic tolerance (IT). The underlying molecular mechanisms are still not fully understood. Recently, the activation of proteases called caspases has been shown to play an important role in apoptotic death associated with ischemia.Here, we study the Caspase-3 on IPC-induced neuroprotection. Primary cortical neurons were exposed to a moderate subtoxic concentration of N-methyl-Daspartate (NMDA; 20?M NMDA; IPC condition) for 2 hours, followed by incubation for further 90 min in normoxic (presence of oxygen and glucose) or ischemic (oxygen and glucose deprivation; OGD). In parallel, control neurons were not stimulated with NMDA. After 4 hours of incubation in culture médium, neuronal apoptosis (Annexin-V-staining) was analyzed by flow cytometry. Further, the activity and expression of active caspase-3 were determined  using Fluorometric assay and Immunoflurescence, respectively.Previously, the results of the lab group showed that IPC prevented apoptosis induced by OGD in neurons. In this work we show that the IPC prevented OGD induced caspase-3 activation. These finding demonstrate the key role of the apoptosis signalling pathway in neuroprotection induced by IPC against a subsequent ischemic insult and poses caspase-3 as an essential target in ischemic tolerance.

Referencias bibliográficas

  • Almeida A, Delgado-Esteban M, Bolaños JP, Medina J. Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem. 2002; 81(2):207-217.
  • Fernández-Gómez F, Hernández F, Argandoña L, Galindo M, Segura T, Jordán J. Farmacología de la neuroprotección en el ictus isquémico agudo. Rev Neurol. 2008; 47(5):253-260.
  • Gomez-Sanchez J, Delgado-Esteban M, Rodriguez-Hernandez I, Sobrino T, Perez de la Ossa N, Reverte S et al. The human Tp53 Arg72Pro polymorphism explains different functional prognosis in stroke. JEM. 2011; 208(3):429-437.
  • Kirino T. Ischemic Tolerance. J Cereb Blood Flow Metab. 2002; 22(11):1283-1296.
  • Sánchez-Pérez M, Álvarez Barrientos A. Inmunología aplicada y técnicas inmunológicas. 1º ed. Madrid: Síntesis; 1998.
  • Soriano F. Preconditioning Doses of NMDA Promote Neuroprotection by Enhancing Neuronal Excitability. J. Neurosci. 2006; 26(17):4509-4518.
  • Vasdekis S, Athanasiadis D, Lazaris A, Martikos G, Katsanos A, Tsivgoulis G et al. The role of remote ischemic preconditioning in the treatment of atherosclerotic diseases. Brain Behav. 2013; 3(6):606-616.
  • Técnicas Histológicas. 5-Tinción: inmunocitoquímicas. Atlas de Histología Vegetal y Animal [Internet]. Vigo: departamento de Biología Funcional y Ciencias de la Salud, Universidad de Vigo; 2003 [actualizo 03 mar 2015; citado 03 may 2016]. Disponible en: http://mmegias.webs.uvigo.es/6-tecnicas/5-inmuno.php.
  • Vijayakumar T, Sangwan A, Sharma B, Majid A, GK R. Cerebral Ischemic Preconditioning: the Road So Far… Mol Neurobiol. 2015; 53 (4):2579-2593.