Estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway construction

  1. E. Teijón-López-Zuazo
  2. Á. Vega-Zamanillo
  3. M. Á. Calzada-Pérez
  4. L. Juli-Gándara
Revue:
Materiales de construcción

ISSN: 0465-2746

Année de publication: 2020

Titre de la publication: Online First; e217

Volumen: 70

Número: 338

Type: Article

DOI: 10.3989/MC.2020.09019 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Materiales de construcción

Résumé

Granite rock has powerful alterations at several meters of depth. The clayed sand resulting is commonly known as jabre. This “in situ” mixture of cement-stabilized soil requires a laboratory formula. Even when the test section is correctly verified, the mechanical properties of the homogeneous mixture of jabre exhibit high degrees of dispersion. The laboratory work undertaken included particle-size analysis and screening, definition of liquid and plastic limits, compressive strength, dry density and moisture content over stabilized samples, modified Proctor, California Bearing Ratio (CBR) and the determination of the workability of the hydraulically bound mixtures. The stress resistance curve was analyzed by means of a multilinear model of unconfined compressive strength (UCS). Since practical engineering only requires UCS for 7 days, in order to gain greater knowledge of the material, other UCS transformations were used at other curing times such as 7, 14 and 28 days.