Bivariate hierarchical model for the Meta-analysis of diagnostic tests in studies with binary responses: its application from SAS and R

  1. Bauz-Olvera, Sergio Alex 1
  2. Pambabay-Calero, Johny Javier 1
  3. Nieto-Librero, Ana Belén 2
  4. Galindo-Villardón, María Purificación 2
  1. 1 Escuela Superior Politecnica del Litoral
    info

    Escuela Superior Politecnica del Litoral

    Guayaquil, Ecuador

    ROR https://ror.org/04qenc566

  2. 2 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Proyecciones: Journal of Mathematics

ISSN: 0716-0917 0717-6279

Año de publicación: 2020

Volumen: 39

Número: 5

Páginas: 1365-1380

Tipo: Artículo

DOI: 10.22199/ISSN.0717-6279-2020-05-0083 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Proyecciones: Journal of Mathematics

Resumen

Los estudios de precisión de las pruebas diagnósticas normalmente informan el número de verdaderos positivos, falsos positivos, verdaderos negativos y falsos negativos. Por lo general, existe una asociación negativa entre el número de verdaderos positivos y verdaderos negativos, porque los estudios que adoptan un criterio menos estricto para declarar un test positivo necesitan sensibilidades más altas y especificidades más bajas. Debido a esta particularidad, se debe conservar la naturaleza bivariante de los datos, modelizando la sensibilidad y especificidad de manera conjunta. En este trabajo, se empleará el modelo jerárquico bivariante aplicado a un conjunto de datos de un meta-análisis que fue una actualización de una revisión sistemática previa sobre pruebas de diagnóstico para la enfermedad de Chagas crónica. Nuestro marco de modelización se implementa con el procedimiento NLMIXED de SAS, permitiendo obtener medidas resúmenes para la sensibilidad y especificidad con valores de 0.725 y 0.995 respectivamente, de un total de 35 estudios que involucraron 6057 pacientes.

Referencias bibliográficas

  • J. B. Reitsma, A. S. Glas, A. W. S. Rutjes, R. J. P. M. Scholten, P. M. Bossuyt, and A. H. Zwinderman, “Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews”, Journal of clinical epidemiology, vol. 58, no. 10, pp. 982–990, 2005, doi: 10.1016/j.jclinepi.2005.02.022
  • C. M. Rutter and C. A. Gatsonis, “A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations”, Statistics in medicine, vol. 20, no. 19, pp. 2865–2884, 2001, doi: 10.1002/sim.942
  • M. M. G. Leeflang, “Systematic reviews of diagnostic test accuracy”, Annals of internal medicine, vol. 149, no. 12, p. 889, Dec. 2008, doi: 10.7326/0003-4819-149-12-200812160-00008
  • J. Menke, “Bivariate random-effects meta-analysis of sensitivity and specificity with SAS PROC GLIMMIX”, Methods of information in medicine, vol. 49, no. 01, pp. 54–64, 2010, doi: 10.3414/me09-01-0001
  • P. Doebler and H. Holling, “Meta-analysis of diagnostic accuracy with mada”, R Packag, vol. 1, p. 15, 2015. [On line]. Available: https://bit.ly/36agmQy
  • P. E. Brasil, L. D. Castro, A. M. Hasslocher-Moreno, L. H. Sangenis, and J. U. Braga, “ELISA versus PCR for diagnosis of chronic Chagas disease: systematic review and meta-analysis”, BMC Infectious Diseases, vol. 10, no. 1, Nov. 2010, doi: 10.1186/1471-2334-10-337
  • P. E. Brasil, R. Castro, and L. D. Castro, “Commercial enzyme-linked immunosorbent assay versuspolymerase chain reaction for the diagnosis of chronic Chagas disease: a systematic review and meta-analysis”, Memórias do Instituto Oswaldo Cruz, vol. 111, no. 1, pp. 1–19, Jan. 2016, doi: 10.1590/0074-02760150296
  • C. Morel, “Faculty opinions recommendation of International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients”, Faculty Opinions – post-publication peer review of the biomedical literature, Jan. 2011, doi: 10.3410/f.7957957.8322055
  • L. E. Moses, D. Shapiro, and B. Littenberg, “Combining independent studies of a diagnostic test into a summary roc curve: Data-analytic approaches and some additional considerations”, Statistics in medicine, vol. 12, no. 14, pp. 1293–1316, Jul. 1993, doi: 10.1002/sim.4780121403
  • H. C. V. Houwelingen, L. R. Arends, and T. Stijnen, “Advanced methods in meta-analysis: multivariate approach and meta-regression”, Statistics in medicine, vol. 21, no. 4, pp. 589–624, 2002, doi: 10.1002/sim.1040
  • J. J. Deeks, “Systematic reviews in health care: Systematic reviews of evaluations of diagnostic and screening tests”, BMJ, vol. 323, no. 7305, pp. 157–162, Jul. 2001, doi: 10.1136/bmj.323.7305.157
  • R. Dersimonian and N. Laird, “Meta-analysis in clinical trials”, Controlled clinical trials, vol. 7, no. 3, pp. 177–188, Sep. 1986, doi: 10.1016/0197-2456(86)90046-2
  • J. P. T. Higgins and S. G. Thompson, “Quantifying heterogeneity in a meta-analysis”, Statistics in medicine, vol. 21, no. 11, pp. 1539–1558, 2002, doi: 10.1002/sim.1186
  • M. Leeflang, J. J. Deeks, Y. Takwoingi, and P. Macaskill, “Cochrane diagnostic test accuracy reviews”, Systematic reviews, vol. 2, no. 1, Oct. 2013, doi: 10.1186/2046-4053-2-82
  • J. P. T. Higgins, “Measuring inconsistency in meta-analyses”, BMJ, vol. 327, no. 7414, pp. 557–560, Sep. 2003, doi: 10.1136/bmj.327.7414.557
  • T. A. Trikalinos, C. M. Balion, C. I. Coleman, L. Griffith, P. L. Santaguida, B. Vandermeer, and R. Fu, “Chapter 8: Meta-analysis of test performance when there is a ‘Gold Standard’”, Journal of general internal medicine, vol. 27, no. S1, pp. 56–66, May 2012, doi: 10.1007/s11606-012-2029-1
  • J. J. Pambabay-Calero, S. A. Bauz-Olvera, A. B. Nieto-Librero, M. P. Galindo-Villardón, and S. Hernández-González, “An alternative to the cochran-(q) statistic for analysis of heterogeneity in meta-analysis of diagnostic tests based on hj biplot”, Investigación operacional, vol. 39, no. 4, pp. 536–544, 2018. [On line]. Available: https://bit.ly/3j8U3Ot
  • P. Doebler, H. Holling, and D. Böhning, “A mixed model approach to meta-analysis of diagnostic studies with binary test outcome”, Psychological methods, vol. 17, no. 3, pp. 418–436, Sep. 2012, doi: 10.1037/a0028091
  • R. M. Harbord, J. J. Deeks, M. Egger, P. Whiting, and J. A. C. Sterne, “A unification of models for meta-analysis of diagnostic accuracy studies”, Biostatistics, vol. 8, no. 2, pp. 239–251, May 2006, doi: 10.1093/biostatistics/kxl004
  • R. M. Harbord and P. Whiting, “Metandi: meta-analysis of diagnostic accuracy using hierarchical logistic regression”, The Stata journal: promoting communications on statistics and Stata, vol. 9, no. 2, pp. 211–229, Aug. 2009., doi: 10.1177/1536867x0900900203
  • P. Macaskill, “Empirical Bayes estimates generated in a hierarchical summary ROC analysis agreed closely with those of a full Bayesian analysis”, Journal of clinical epidemiology, vol. 57, no. 9, pp. 925–932, Sep. 2004, doi: 10.1016/j.jclinepi.2003.12.019
  • A. F. Carvalho, Y. Takwoingi, P. M. G. Sales, J. K. Soczynska, C. A. Köhler, T. H. Freitas, J. Quevedo, T. N. Hyphantis, R. S. Mcintyre, and E. Vieta, “Screening for bipolar spectrum disorders: a comprehensive meta-analysis of accuracy studies”, Journal of affective disorders, vol. 172, pp. 337–346, Feb. 2015, doi: 10.1016/j.jad.2014.10.024
  • M. M. Leeflang, J. J. Deeks, Y. Takwoingi, and P. Macaskill, “Cochrane diagnostic test accuracy reviews”, Systematic reviews, vol. 2, no. 1, Oct. 2013, doi: 10.1186/2046-4053-2-82
  • S. A. Bauz-Olvera, J. J. Pambabay-Calero, A. B. Nieto-Librero, and M. P. Galindo-Villardón, “Meta-analysis in dta with hierarchical models Bivariate and HSROC: Simulation study”, Springer proceedings in mathematics & statistics selected contributions on statistics and data science in Latin America, pp. 33–42, 2019, doi: 10.1007/978-3-030-31551-1_3