Robots en la educación de la primera infanciaaprender a secuenciar acciones usando robots programables

  1. Caballero González, Yen Air 1
  2. García-Valcárcel Muñoz-Repiso, Ana 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
RIED: revista iberoamericana de educación a distancia

ISSN: 1138-2783

Año de publicación: 2021

Título del ejemplar: Monográfico. Tecnologías avanzadas para afrontar el reto de la innovación educativa

Volumen: 24

Número: 1

Páginas: 77-94

Tipo: Artículo

DOI: 10.5944/RIED.24.1.27508 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: RIED: revista iberoamericana de educación a distancia

Resumen

El incremento y avance tecnológico que experimenta la sociedad actualmente está impulsando el desarrollo de iniciativas educativas que integran actividades de enseñanza-aprendizaje para fomentar habilidades digitales asociadas a la programación y el pensamiento computacional como es la secuenciación de movimientos. En este trabajo se muestran algunos de los resultados que se obtuvieron con la realización de una experiencia de aprendizaje sobre el pensamiento computacional orientado a los niños en la educación temprana. En las actividades se efectuaron retos de programación utilizando el robot Bee-Bot®. El estudio contempló evaluaciones de tipo pretest/postest utilizando grupo control. La muestra de participantes fue de 40 estudiantes pertenecientes a un centro educativo, ubicado en Salamanca, España. Las actividades se desarrollaron en el curso 2018-2019. La recolección de datos sobre el dominio alcanzado por los estudiantes, en las evaluaciones desarrolladas, se efectuó mediante el uso de una rúbrica de evaluación. Los datos recolectados nos permitieron conocer la existencia de diferencias significativas en la capacidad de secuenciación de acciones a favor de los estudiantes que participaron de las actividades de aprendizaje con robots. Por otro lado, se pudo afirmar que no se encontraron diferencias asociadas al sexo de los participantes en relación con la programación y construcción de secuencias.

Referencias bibliográficas

  • Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., y Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3). www.jstor.org/stable/jeductechsoci.19.3.47
  • Berrocoso, J., Sánchez, M., y Arroyo, M. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje. Red, 46, 1-18. https://doi.org/10.6018/red/46/3
  • Bers, M. U. (2008). Blocks, robots and computers: Learning about technology in early childhood. New York: Teacher’s College Press.
  • Bers, M. U. (2010). The TangibleK Robotics program: Applied computational thinking for Young children. Early Childhood Research & Practice, 12(2). https://bit.ly/2RZ3B11
  • Bers, M. U. (2012). Designing Digital Experiences for Positive Youth Development: From Playpen to Playground. Oxford: University Press. https://doi.org/10.1093/acprof:oso/9780199757022.001.0001
  • Bers, M. U. (2017). The Seymour test: Powerful ideas in early childhood education. International Journal of Child - Computer Interaction, 14, 10-14. https://doi.org/10.1016/j.ijcci.2017.06.004
  • Bers, M. U. (2018). Coding and Computational Thinking in Early Childhood: The Impact of Scratch Jr in Europe. European Journal of STEM Education, 3(3), 08. https://doi.org/10.20897/ejsteme/3868
  • Bers, M. U., Flannery, L., Kazakoff, E. R., y Sullivan, A. (2014). Computational thinking and tinke-ring: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. https://doi.org/10.1016/j.compedu.2013.10.020
  • Brennan, K., y Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association (AERA) (pp. 1-25), Vancouver, Canada.
  • Bruni, F., y Nisdeo, M. (2017). Educational robots and children’s imagery: A preliminary investigation in the first year of primary school. Research on Education and Media, 9(1), 37-44. https://doi.org/10.1515/rem-2017-0007
  • Caballero-González, Y. A., y García-Valcárcel, A. (2019). Fortaleciendo habilidades de pensamiento computacional en Educación Infantil: Experiencia de aprendizaje mediante interfaces tangible y gráfica. Revista Latinoamericana de Tecnología Educativa-RELATEC, 18(2). https://doi.org/10.17398/1695-288X.18.2.133
  • Campbell, D., y Stanley, J. (1993). Diseños experimentales y cuasiexperimentales en la investigación social. Amorrortu.
  • Cejka, E., Rogers, C., y Portsmore, M. (2006). Kindergarten robotics: Using Robotics to motivate math, science, and engineering literacy in elementary school. International Journal of Engineering Education, 22(4), 711-722.
  • Chalmers, C. (2018). International Journal of Child-Computer Interaction Robotics and computational thinking in primary school. International Journal of Child-Computer Interaction, 17, 93-100. https://doi.org/10.1016/j.ijcci.2018.06.005
  • Cheng, Y. W., Sun, P. C., y Chen, N. S. (2018). The essential applications of educational robot: Requirement analysis from the perspectives of experts, researchers and instructors. Computers & education, 126, 399-416. https://doi.org/10.1016/j.compedu.2018.07.020
  • Di Lieto, M. C., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., Dell’Omo, M., ... y Dario, P. (2017). Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Computers in Human Behavior, 71, 16-23. https://doi.org/10.1016/j.chb.2017.01.018
  • Elkin, M., Sullivan, A., y Bers, M. U. (2016). Programming with the KIBO robotics kit in preschool classrooms. Computers in the Schools, 33(3), 169-186. https://doi.org/10.1080/07380569.2016.1216251
  • Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for constructive learning in preschool education. Computers & education, 70, 53-64. https://doi.org/10.1016/j.compedu.2013.07.043
  • García-Peñalvo, F. J., Rees, A. M., Hughes, J., Jormanainen, I., Toivonen, T., y Vermeersch, J. (2016). A survey of resources for introducing coding into schools. Proceedings of the Fourth Inter-national Conference on Technological Ecosystems for Enhancing Multiculturality, TEEM’16. (pp.19-26). Salamanca, Spain, November 2-4, 2016. New York: ACM. https://doi.org/10.1145/3012430.3012491
  • García-Peñalvo, F. J., y Mendes, A. J. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407-411. https://doi.org/10.1016/j.chb.2017.12.005
  • García-Valcárcel, A., y Hernández, A. (2013). Recursos tecnológicos para la enseñanza e innovación educativa. Editorial Síntesis
  • Goodgame, C. (2018). Beebots and Tiny Tots. In E. Langran, y J. Borup (Eds.), Society for Information Technology & Teacher Education International Conference (1179-1183). Association for the Advancement of Computing in Education (AACE).
  • González-González, C. S. (2019). Estrategias para la enseñanza del pensamiento computacional y uso efectivo de tecnologías en educación infantil: una propuesta inclusiva. RIITE. Revista Interuniversitaria de Investigación en Tecnología Educativa, 7, 85-97. https://doi.org/10.6018/riite.405171
  • González-González, C. S. (2019). State of the art in the teaching of computational thinking and pro-gramming in childhood education. Education in the Knowledge Society, 20, 17. https://doi.org/10.14201/eks2019_20_a17
  • González-Martínez, J., Estebanell-Minguell, M., y Peracaula-Bosch, M. (2018). ¿Robots o programación? El concepto de Pensamiento Computacional y los futuros maestros. Education in the Knowledge Society (EKS). https://doi.org/10.14201/eks20181922945
  • González, Y. A. C., y García-Valcárcel, A. (2017, November). Educational robotics for the formation of programming skills and computational thinking in childish. In 2017 International Symposium on Computers in Education (SIIE) (pp. 1-5). IEEE. https://doi.org/10.1109/SIIE.2017.8259652
  • González, Y. A. C., y García-Valcárcel, A. (2018, October). A robotics-based approach to foster programming skills and computational thinking: Pilot experience in the classroom of early childhood education. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 41-45), ACM. https://doi.org/10.1145/3284179.3284188
  • González, Y. A. C., y García-Valcárcel, A. (2020). ¿Aprender con robótica en Educación Primaria? Un medio de estimular el pensamiento computacional. Education in the knowledge society (EKS), 21(10). https://doi.org/10.14201/eks.22957
  • Grover, S. y Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the Field. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051
  • Henriksen, D., Henderson, M., Creely, E, Ceretkova, S., Černochová, M., Sendova, E., Sointu, E. T., y Tienken, C. T. (2018). Creativity and Technology in Education: An International Perspective. Technology, Knowledge and Learning, 23, 409-424. https://doi.org/10.1007/s10758-018-9380-1
  • Hernández Sampieri, R., Fernández-Collado, C., y Baptista-Lucio. P. (2014). Metodología de la in-vestigación. McGraw-Hill Education.
  • Horn, M., y Bers, M. (2019). Tangible Computing. In The Cambridge Handbook of Computing Edu-cation Research (S.A. Fincher and A.V. Robins, Eds.), Cambridge University Press. https://doi.org/10.1017/9781108654555.023
  • Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Computers in Human Behavior, 52, 200-210. https://doi.org/10.1016/j.chb.2015.05.047
  • Karampinis, T. (2018). Robotics-based learning interventions and experiences from our implementations in the RobESL framework. International Journal of Smart Education and Urban Society, 9(1), 13-24. https://doi.org/10.4018/IJSEUS.2018010102
  • Kucuk, S., y Sisman, B. (2017). Behavioral patterns of elementary students and teachers in one-to-one Robotics instruction. Computers & Education, 111, 31-43. https://doi.org/10.1016/j.compedu.2017.04.002
  • Lee, I., Martin, F., y Apone, K. (2014). Integrating computational thinking across the K–8 curriculum. ACM Inroad, 5(4), 64-71. https://doi.org/10.1145/2684721.2684736
  • Liu H. P., Perera S. M., y Klein J. W. (2017) Using Model-Based Learning to Promote Computational Thinking Education. In P. Rich y C. Hodges (Eds.), Emerging Research, Practice, and Policy on Computational Thinking. Educational Communications and Technology: Issues and Innovations. Springer, Cham. https://doi.org/10.1007/978-3-319-52691-1_10
  • Metz, S. S. (2007). Attracting the engineering of 2020 today. In R. Burke y M. Mattis (Eds.), Women and minorities in science, technology, engineering and mathematics: Upping the numbers (184–209). Edward Elgar Publishing.
  • Merrill, M. D. (2009). First principles of instruction. In C. M. Reigeluth y A. A. Carr-Chellman (Eds.), Instructional-design theories and models: Building a common knowledge base (Vol. III), (41-56). Routledge.
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
  • Papadakis, S., Kalogiannakis, M., y Zaranis, N. (2016). Developing fundamental programming concepts and computational thinking with ScratchJr in preschool education: a case study. International Journal of Mobile Learning and Organization, 10(3), 187. https://doi.org/10.1504/IJMLO.2016.077867
  • Ramírez, P. A. L., y Sosa, H. A. (2013). Aprendizaje de y con robótica, algunas experiencias. Revista Educación, 37(1), 43-63. https://doi.org/10.15517/revedu.v37i1.10628
  • Reigeluth, C. M. (2016). Teoría instruccional y tecnología para el nuevo paradigma de la educación. RED. Revista de Educación a Distancia, 50. https://doi.org/10.6018/red/50/1a
  • Relkin, E., y Bers, M. U. (2019). Designing an assessment of computational thinking abilities for young children. STEM for early childhood learners: how science, technology, engineering and mathematics strengthen learning. Routledge. https://doi.org/10.4324/9780429453755-5
  • Resnick, M., y Rosenbaum, E. (2013). Designing for tinkerability. Design, Make, Play: Growing the Next Generation of STEM Innovators, 163-181. https://doi.org/10.4324/9780203108352
  • Santoya–Mendoza, A., Díaz–Mercado, A., Fontalvo–Caballero, F., Daza–Torres, L., Avendaño–Bermúdez, L., Sánchez–Noriega, L., Ramos–Bernal, P., Barrios–Martínez, E., López–Daza, M., Osorio–Cervantes, G., Rodríguez–Pertuz, M., y Moreno–Polo, V. (2018). Robótica educativa desde la investigación como estrategia pedagógica apoyada en TIC en la escuela. Cultura. Educación y Sociedad 9(3), 699-708. https://doi.org/10.17981/cultedusoc.9.3.2018.82
  • Selby, C., y Woollard, J. (2013). Computational thinking: the developing definition. https://cutt.ly/vryITzu
  • Siu-Cheung, K. (2019). Components and Methods of Evaluating Computational Thinking for Fostering Creative Problem-Solvers in Senior Primary School Education. Computational thinking Education. NY: Springer Berlin Heidelberg. https://doi.org/10.1007/978-981-13-6528-7_8
  • Strawhacker, A., y Bers, M. U. (2015). “I want my robot to look for food”: Comparing Kindergartner’s programming comprehension using tangible, graphic, and hybrid user interfaces. International Journal of Technology and Design Education, 25(3), 293-319. https://doi.org/10.1007/s10798-014-9287-7
  • Strawhacker, A., y Bers, M. U. (2019). Promoting Positive Technological Development in a Kinder-garten Makerspace: A Qualitative Case Study. European Journal of STEM Education, 3(3), 09. https://doi.org/10.20897/ejsteme/3869
  • Sullivan, A., y Bers, M. U. (2013). Gender differences in kindergarteners’ robotics and programming achievement. International journal of technology and design education, 23(3), 691-702. https://doi.org/10.1007/s10798-012-9210-z
  • Sullivan, A., y Bers, M. U. (2016). Robotics in the early childhood classroom: learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3-20. https://doi.org/10.1007/s10798-015-9304-5
  • Sullivan, A., y Bers, M. U. (2018). Dancing robots: integrating art, music, and robotics in Singapo-re’s early childhood centers. International Journal of Technology and Design Education, 28(2), 325-346. https://doi.org/10.1007/s10798-017-9397-0
  • Sullivan, A., y Bers, M. U. (2019). Investigating the use of robotics to increase girls’ interest in engineering during early elementary school. International Journal of Technology and Design Education, 29(5), 1033-1051. https://doi.org/10.1007/s10798-018-9483-y
  • Sullivan, A., Bers, M. U., y Mihm, C. (2017). Imagining, playing, and coding with KIBO: using robotics to foster computational thinking in young children. Siu-cheung KONG The Education University of Hong Kong, Hong Kong, 110.
  • Sullivan, A., Strawhacker, A., y Bers, M. U. (2017). Dancing, Drawing, and Dramatic Robots: Inte-grating Robotics and the Arts to Teach Foundational STEAM Concepts to Young Children. En M. S. Khine (Ed.), Robotics in STEM Education: Redesigning the Learning Experience (231-260). Springer International Publishing. https://doi.org/10.1007/978-3-319-57786-9_10
  • Szurmak, J., y Mindy, T. (2013). Tell me a story: The use of narrative as a tool for instruction. In Imagine, Innovate, Inspire: The Proceedings of the ACRL 2013 Conference (pp. 546-552). Indianapolis, IN, USA: ACRL.
  • Vee, A. (2013). Understanding computer programming as a literacy. Literacy in Composition Studies, 1(2), 42-64. https://doi.org/10.21623/1.1.2.4
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  • Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. Red, 46, 1-47. https://doi.org/10.6018/red/45/4
  • Zapata-Ros, M. (2019). Computational Thinking Unplugged. Education in the Knowledge Society, 20, 18. https://doi.org/10.14201/eks2019_20_a18