Hybridization as a biodiversity driverthe case of Veronica × gundisalvi

  1. Noemí López-González 1
  2. Javier Bobo-Pinilla 1
  3. David Gutiérrez-Larruscain 2
  4. M. Montserrat Martínez-Ortega 1
  5. Blanca M. Rojas-Andrés 3
  1. 1 Departamento de Botánica y Fisiología vegetal. Biobanco de ADN Vegetal. University of Salamanca.
  2. 2 Institute of Experimental Botany of the Czech Academy of Sciences.
  3. 3 Leipzig University.
Aldizkaria:
Mediterranean Botany

ISSN: 2603-9109

Argitalpen urtea: 2021

Alea: 42

Mota: Artikulua

DOI: 10.5209/MBOT.67901 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Mediterranean Botany

Laburpena

Hybridization is an important mechanism in plant evolution, which contributes to the adaptability and biological diversity of species in fundamental ways. Based on morphological data, Veronica × gundisalvi Sennen (Veronicaorsiniana × Veronicatenuifolia subsp. tenuifolia) is an Iberian endemic taxon of presumably polytopic hybrid origin restricted to five localities in Catalonia, where the putative parental species grow in sympatry. In this study, species distribution models were developed for the putative parental species to seek potential new localities where active hybridization could be taking place. As a result, a new location of this nothotaxon in Zaragoza is provided, along with a chromosome count and ploidy level estimations. The data presented herefurther support Veronica × gundisalvi as a homoploid hybrid taxon that occurs in non-altered habitats. In contrast to the traditional view of hybridization as deleterious for the conservation of biodiversity, it does not always represent a problem in this regard. Hybridization is a complex evolutionary force that requires case-specific evaluation. Given that biodiversity loss is one of the main contemporary challenges, it is important to consider the creative nature of hybridization, a widespread evolutionary mechanism able to produce novel diversity.

Erreferentzia bibliografikoak

  • Abbott, R., Albach, D., Ansell, S., Arntzen, J.W., Baird, S.J., Bierne, N., Boughman J., Brelsford, A., Buerkle, C.A., Buggs, R., R. K. Butlin, R.K., Dieckmann, U., Eroukhmanoff, F., Grill, A., Cahan, S.H., Hermansen, J.S., Hewitt, G., Hudson, A.G., Jiggins, C., Jones, J., Keller, B., Marczewski, T., Mallet, J., Martinez-Rodriguez, P., Möst, M., Mullen, S., Nichols, R., Nolte, A.W., Parisod, C., Pfennig, K., Rice, A.M., Ritchie, M.G., Seifert, B., Smadja, C.M., Stelkens, R., Szymura, R.M., Vaïnöla, R., Wolf, J.B.W. & Zinner, D. 2013. Hybridization and speciation. J. Evol. Biol. 26(2): 229–246. doi: https://doi.org/10.1111/j.1420-9101.2012.02599.x
  • Agudo, A.B., Torices, R., Loureiro, J., Castro, S., Castro, M. & Álvarez, I. 2019. Genome size variation in a hybridizing diploid species complex in Anacyclus (Asteraceae: Anthemideae). Int. J. Plant Sci. 180(5): 374−385. doi: https://doi.org/10.1086/703127
  • Arrigo, N. & Barker, M.S. 2012. Rarely successful polyploids and their legacy in plant genomes. Curr. Opin. Plant Biol. 15: 140−146. doi: https://doi.org/10.1016/j.pbi.2012.03.010
  • Baack, E.J., Whitney, K.D. & Rieseberg, L.H. 2005. Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol. 167(2): 623−630. doi: https://doi.org/10.1111/j.1469-8137.2005.01433.x
  • Barton, N.H. & Hewitt, G.M. 1989. Adaptation, speciation and hybrid zones. Nature 341: 497−503. doi: 10.1038/341497a0
  • Chan, W.Y., Hoffmann, A.A. & van Oppen, M.J. 2019. Hybridization as a conservation management tool. Conserv. Lett. 12(5): e12652. doi: https://doi.org/10.1111/conl.12652
  • Cozzolino, S., Nardella, A.M., Impagliazzo, S., Widmer, A. & Lexer, C. 2006. Hybridization and conservation of Mediterranean orchids: should we protect the orchid hybrids or the orchid hybrid zones? Biol. Cons.129: 14−23. doi: https://doi.org/10.1016/j.biocon.2005.09.043
  • Doležel, J., Sgorbati, S. & Lucretti, S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85: 625−631. doi: https://doi.org/10.1034/j.1399-3054.1992.850410.x
  • Elith, J. 2002. Quantitative methods for modeling species habitat: Comparative performance and an application to Australian plants. In: Ferson, S. & Burgham, M. (Eds.). Quantitative Methods for Conservation Biology. Pp. 39−58. Springer, New York. doi: https://doi.org/10.1007/0-387-22648-6_4
  • Elith, J. & Leathwick, J.R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 40: 677−697. doi: https://doi.org/10.1146/annurev.ecolsys.110308.120159
  • Engler, J.O., Stiels, D., Schidelko, K., Strubbe, D., Quillfeldt, P. & Brambilla, M. 2017. Avian SDMs: current state, challenges, and opportunities. J. Avian Biol. 48(12): 1483−1504. doi: https://doi.org/10.1111/jav.01248
  • Heiberger, R.M. 2017. HH: Statistical Analysis and Data Display: Heiberger and Holland. R package version 3.1−34.
  • https://CRAN.R-project.org/package=HH
  • Hijmans, R.J. 2019. raster: Geographic Data Analysis and Modeling. R package version 2.8−19. https://CRAN.R-project.org/package=raster
  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965−1978. doi: https://doi.org/10.1002/joc.1276
  • Jackiw, R.N., Mandil, G. & Hager, H.A. 2015. A framework to guide the conservation of species hybrids based on ethical and ecological considerations. Conserv. Biol. 29: 1040−1051. doi: https://doi.org/10.1111/cobi.12526
  • La Cour L.F. 1954. Smear and squash techniques in plant cytology. Laboratory Practice 3: 326−330.
  • Mallet, J. 2005. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20: 229−237. doi: https://doi.org/10.1016/j.tree.2005.02.010
  • Marques D.A., Meier J.I. & Seehausen O. 2019. A Combinatorial View on Speciation and Adaptive Radiation. Trends Ecol. Evol. 34: 531−544. doi: https://doi.org/10.1016/j.tree.2019.02.008
  • Marques, I., Loureiro, J., Draper, D., Castro, M. & Castro, S. 2018. How much do we know about the frequency of hybridization and polyploidy in the Mediterranean region? Plant Biol. 20: 21−37. doi: https://doi.org/10.1111/plb.12639
  • Martínez-Ortega, M.M., Delgado, L., Albach, D.C., Elena-Roselló, J.A. & Rico, E. 2004. Species boundaries and phylogeographic patterns in cryptic taxa inferred from AFLP markers: Veronica subgen. Pentasepalae (Scrophulariaceae) in the western Mediterranean. Syst. Bot. 29: 965−986. doi: https://doi.org/10.1600/0363644042451071
  • Muscarella, R., Galante, P.J., Soley‐Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M., Anderson, R.P. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5: 1198−1205. doi: https://doi.org/10.1111/2041-210x.12261
  • Nieto-Feliner, G., Alvarez, I., Fuertes-Aguilar, J., Heuertz, M., Marques, I., Moharrek, F., Piñeiro, R., Riina, R., Rosselló, J.A., Soltis P.S. & Villa-Machío, I. 2017. Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity 118: 513−516. doi: https://doi.org/10.1038/hdy.2017.7
  • Padilla-García, N., Rojas-Andrés, B.M., López-González, N., Castro, M., Castro, S., Loureiro, J., Albach, D.C., Machon, N. & Martínez-Ortega, M.M. 2018. The challenge of species delimitation in the diploid-polyploid complex Veronica subsection Pentasepalae. Mol. Ecol. Evol. 119: 196−209. doi: https://doi.org/10.1016/j.ympev.2017.11.007
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Townsend Peterson A. 2007. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102−117. doi: https://doi.org/10.1111/j.1365-2699.2006.01594.x
  • Phillips, S.J., Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3): 231−259. doi: https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Rieseberg, L.H., Raymond, O., Rosenthal, D.M., Lai, Z., Livingstone, K., Nakazato, T., Durphy, J.L., Schwarzbach, A.E., Donovan, L.A. & Lexer, C. 2003. Major ecological transition in wild sunflowers facilitated by hybridization. Science 301: 1211−1216. doi: https://doi.org/10.1126/science.1086949
  • Rojas-Andrés, B.M., Albach, D.C. & Martínez-Ortega, M.M. 2015. Exploring the intricate evolutionary history of the diploid–polyploid complex Veronica subsection Pentasepalae (Plantaginaceae). Bot. J. Linnean Soc. 179: 670−692. doi: https://doi.org/10.1111/boj.12345
  • Rojas-Andrés, B.M. & Martínez-Ortega, M.M. 2016. Taxonomic revision of Veronica subsection Pentasepalae (Plantaginaceae sensu APG III). Phytotaxa 285: 1−100. doi: https://doi.org/10.11646/phytotaxa.285.1.1
  • Rojas-Andrés, B.M., Padilla-García, N., de Pedro, M., López-González, N., Delgado, L., Albach, D.C., Castro, M., Castro, S., Loureiro, J. & Martínez-Ortega, M.M. 2019. Environmental differences are correlated with the distribution pattern of cytotypes in Veronica subsection
  • Pentasepalae at a broad scale. Ann. Bot. 125: 471−484. doi: https://doi.org/10.1093/aob/mcz182
  • Seehausen O. 2003. Hybridization and adaptive radiation. Trends Ecol. Evol. 19: 198−207. doi: https://doi.org/10.1016/j.tree.2004.01.003
  • Sennen, E.M.G. 1930. Plantes d'Espagne. Bol. Soc. Ibér. Ci. Nat. 29(3-5): 74−89.
  • Soltis, P. S. 2013. Hybridization, speciation and novelty. J. Evol Biol. 26(2): 291−293. doi: https://doi.org/10.1111/jeb.12095
  • Stebbins, G.L. 1950. Variation and evolution in plants. Springer, Boston.
  • Stronen, A.V. & Paquet, P.C. 2013. Perspectives on the conservation of wild hybrids. Biol. Conserv. 167: 390−395.
  • doi: https://doi.org/10.1016/j.biocon.2013.09.004
  • Thiers, B. 2020 (continuously updated). Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/
  • Van Oppen, M.J.H., Oliver, J.K., Putnam, H.M., & Gates, R. D. 2015. Building coral reef resilience through assisted evolution. P. Natl. Acad. Sci. USA 112: 2307−2313. doi: https://doi.org/10.1073/pnas.1422301112
  • vonHoldt, B.M., Brzeski, K.E., Wilcove, D.S. & Rutledge, L.Y. 2018. Redefining the role of admixture and genomics in species conservation. Cons. Lett. 11(2): e12371. doi: https://doi.org/10.1111/conl.12371
  • Wagner, F., Otto, T., Zimmer, C., Reichhart, V., Vogt, R. & Oberprieler, C. 2019. At the crossroads towards polyploidy: genomic divergence and extent of homoploid hybridization are drivers for the formation of the ox-eye daisy polyploid complex (Leucanthemum, Compositae-Anthemideae). New Phytol. 223: 2039−2053. doi: https://doi.org/10.1111/nph.15784
  • Wagner, W.H. 1970. Biosystematics and evolutionary noise. Taxon 19: 146−151. doi: https://doi.org/10.2307/1217945
  • Wolf, D.E., Takebayashi, N. & Rieseberg L.H. 2001. Predicting the risk of extinction through hybridization. Conserv. Biol. 15: 1039−1053. doi: https://doi.org/10.1046/j.1523-1739.2001.0150041039.x