¿Pueden los adolescentes tomar mejores decisiones? La respuesta de la Física La Física como entrenamiento de pensamiento crítico

  1. Héctor Reyes Martín
  2. Juan Manuel García González
  3. José Antonio Mirón Canelo
Revista:
European journal of education and psychology

ISSN: 1888-8992 1989-2209

Año de publicación: 2021

Volumen: 14

Número: 1

Tipo: Artículo

DOI: 10.32457/EJEP.V14I1.1550 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: European journal of education and psychology

Resumen

Tradicionalmente, aprender Física es una tarea complicada. En el presente estudio queremos conocer si hay relación entre el aprendizaje de la Física de modo mayéutico o socrático y las funciones ejecutivas del cerebro. 69 estudiantes preuniversitarios que aprendieron Física empleando un método fundamentado en el funcionamiento del cerebro fueron comparados con un grupo que aprendió Física empleando la clase magistral, exactamente con el mismo N. Ambos grupos fueron analizados con el test de Stroop para buscar diferencias en las funciones ejecutivas, más concretamente en la inhibición de las respuestas inmediatas e intuitivas. El test-T determina que existe una diferencia significativa entre ambos grupos (p<0.036) en el control de la interferencia o inhibición. Estos resultados podrían indicar que esta metodología fundamentada en el funcionamiento del cerebro mejora el proceso de razonamiento de los estudiantes, puesto que sabemos que la cingulada anterior y el lóbulo frontal funcionan como un tándem en ese proceso. Los resultados del presente estudio sugieren que hay una mejora en la inhibición que está relacionada con la forma de aprender. El método propuesto parece que refuerza las funciones ejecutivas del cerebro y tal vez sería posible emplear dicho método en otras asignaturas.

Referencias bibliográficas

  • Aguirre, J. (1988). Student preconceptions about vector kinematics. The Physics Teacher, 26(4), 212-216. https://doi.org/10.1119/1.2342490
  • Alexander, P. (2019). Individual differences in college-age learners: The importance of relational reasoning for learning and assessment in higher education. British Journal of Educational Psychology, 89(3), 416-428. https://doi.org/10.1111/bjep.12264
  • Andrews-Hanna, J., Mackiewicz Seghete, K., Claus, E., Burgess, G., Ruzic, L., & Banich, M. (2011). Cognitive Control in Adolescence: Neural Underpinnings and Relation to Self-Report Behaviors. Plos ONE, 6(6), e21598. https://doi.org/10.1371/journal.pone.0021598
  • Bain, K. (2012). What the best college students do. Cambridge, MA: Belknap Press of Harvard University Press.
  • Bartley, J.E., Riedel, M.C., Salo, T. et al. Brain activity links performance in science reasoning with conceptual approach. npj Sci. Learn. 4, 20 (2019). https://doi.org/10.1038/s41539-019-0059-8
  • Heider, F., & Benesh-Weiner, M. (1988). "The notebooks". Psychologie Verlags Union.
  • Caine, R., & Caine, G. (2003). 12 Brain/mind learning principles in action. The fieldbook for making connections, teaching and the human brain. Corwin Press.
  • Calhoun, C. F. (2012). Brain-Based Teaching: Does It Really Work? ERIC Number: ED535937
  • RSEF. (2015). The State of the Teaching of Physics in High School Education. Madrid. Retrieved from https://rsef.es/images/Fisica/INFORME_FISICA_24-09-2018op.pdf
  • Clement, J. (1982). Students´ preconceptions in introductory mechanics. Am. J. Phys. vol. 50, 66-71.
  • Damasio, A. (2003). Looking for Spinoza. Heinemann.
  • Dew, M., Perry, J., Ford, L., Bassichis, W., Erukhimova, T. (2021). Gendered performance differences in introductory physics: A study from a large land-grant university, Phys. Rev. Phys. Educ. Res. 17, 010106
  • Docktor, J. L., Dornfeld, J., Frodermann, E., Heller, K., Hsu, L., Jackson, K. A., . . . Yang, J. (2016). Assessing student written problem solutions: A problem-solving rubric with application to introductory physics. Physical Review Physics Education Research, vol. 12, Issue 1, 010130.
  • Dunbar, K. N. (2009). The Biology of Physics: What The Brain Reveals About Our Understanding Of The Physical World. Physical Review Physics Education Research, vol. 1179, 15-18.
  • Festinger, L. (1968). A theory of cognitive dissonance. Stanford University Press.
  • Freeman, G., Wash, P. (2013). You Can Lead Students to the Classroom, and You Can Make Them Think: Ten Brain-Based Strategies for College Teaching and Learning Success. Journal on Excellence in College Teaching. 24. 99-120.
  • Golden, C. (2005). Stroop word-color interference. Madrid: TEA Ediciones S.A.U.
  • Hake, R. (1992). Socratic pedagogy in the introductory physics laboratory. Phys. Teach. vol. 33, 1-7.
  • Harlow, H., Harlow, M., & Meyer, D. (1950). Learning motivated by a manipulation drive. Journal Of Experimental Psychology, 40(2), 228-234. https://doi.org/10.1037/h0056906
  • Herrán, C. A. (2002). Didactics, pedagogy, methodology, teaching, learning, of Physics. (Spanish Journal of Physics) Revista Española de Física 16 (4), 8-11.
  • Huguet, P., & Régner, I. (2009). Counter-stereotypic beliefs in math do not protect school girls from stereotype threat. Journal of Experimental Social Psychology, Vol. 45, 1024-1027. Doi: https://doi.org/10.1016/j.jesp.2009.04.029
  • Husnaini, S. J., & Chen, S. (2019). Effects on guided inquiry virtual and physical laboratories on conceptual undestanding, inquiry performance, scientific inquiry self-efficacy, and enjoyment. Phys. Rev. Phys. Educ. Res. 15, 010119. https://doi.org/10.1103/PhysRevPhysEducRes.15.010119
  • Kahneman, D., & Chamorro, J. (2012). Thinking fast and slow. Debate.
  • Koenig, K. M., Endrof, R. J., & Braun, G. A. (2007). Effectiveness of different tutorial recitation teaching methods and its implications for TA training. Physical Review Physics Education Research, vol 3, Issue 1, 010104. https://doi.org/10.1103/PhysRevSTPER.3.010104
  • Körhasan, N. D., & Hidir, M. (2019). How should textbook analogies be used in teaching physics? Phys. Rev. Phys. Educ. Res. 15, 010109. https://doi.org/10.1103/PhysRevPhysEducRes.15.010109
  • Lawson, R., & McDermott, L. (1987). Student understanding of the work-energy and impulse-momentum theorems . Am. J. Phys. vol. 55, 811-817.
  • Levitin, D. (2006). This is your brain on music. Dutton.
  • Lillian C, M., & Redish, E. F. (1999). Resource Letter on Physics Education Research. American Journal of Physics 67, 755 (1999). https://doi.org/10.1119/1.19122
  • Maries, A., Karim, N. I., & Singh, C. (2018). Is agreeing with gender stereotype correlated with the performance of female students in introductory physics? PhysRevPhysEducRes.14.020119.
  • https://doi.org/10.1103/PhysRevPhysEducRes.14.020119
  • Mason, R. A., & Just, M. A. (2016). Neural Reprersentations of Physics Concepts. Assotiation for Psychological Science, vol 27 (6), 904-913.
  • McClelland, D. (1961). The Achieving Society. Princeton.
  • National Geographic. (2009). DOCUMENTAL - My musical brain (National Geographic) [Video]. Retrieved 17 March 2021, from https://www.youtube.com/watch?v=CHrCZOxMVrw.
  • Ogilvie, C. A. (2009). Changes in students´s problem-solving strategies in a course that includes context-rich, multifaceted problems. Physical Review Physics Education Research, vol. 5, Issue 2, 020102. https://doi.org/10.1103/PhysRevSTPER.5.020102
  • Park, H., Leal, F., Abellanoza, C. et al. The formation of source memory under distraction. Behav Brain Funct 10, 40 (2014). https://doi.org/10.1186/1744-9081-10-40
  • Petitto, L. A., & Dunbar, K. N. (2009). Educational Neuroscience: New Discoveries from Bilingual Brains, Scientific Brains, and the Educated Mind. Mind, brain and education: the official journal of the International Mind, Brain, and Education Society, 3(4), 185–197. https://doi.org/10.1111/j.1751-228X.2009.01069.x
  • Pardo, J., Pardo, P., Janer, K., & Raichle, M. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings Of The National Academy Of Sciences, 87(1), 256-259. https://doi.org/10.1073/pnas.87.1.256
  • Posner, M. I. (2009). Bridging Cognitive And Neural Aspects Of Classroom Learning. AIP Conference Proceedings 1179, 39 (2009). Doi: https://doi.org/10.1063/1.3266747
  • Redish, E. (1994). Implications of cognitive studies for teaching physics. American Journal of Physics 62, 796. Doi: https://doi.org/10.1119/1.17461
  • Redish, E. (2003, July 15-25). A theoretical framework for physics education research: Modeling student thinking. Paper presented at Proceedings of the International School of Physics , Varenna, Italy. Retrieved March 17, 2021, from IOS Press: https://eric.ed.gov/?id=ED493138
  • Saleh, S. (2011). The Effectiveness of the Brain-Based Teaching Approach in Generating Students’ Learning Motivation Towards the Subject of Physics: A Qualitative Approach. US-China Education Review, 63-72.
  • Saleh, S. (2012). The effectivness of the brain based teaching approach in enhancing scientific understanding of Newtonian Physics among form four students. International Journal of Environmental & Science Education, 107-122.
  • Skinner, F., B. (1957). Verval behavior. Prentice Hall, Inc.
  • Trowbridge, D., McDermott, L. (1981). Investigation of student understanding of the concept of acceleration in one dimension. Am. J. Phys. vol. 49, 242-253.
  • Tüfekçi, S., Demirel, M. The effect of brain based learning on achievement, retention, attitude and learning process. Procedia - Social and Behavioral Sciences. Volume 1, Issue 1, 2009, Pages 1782-1791.Doi: https://doi.org/10.1016/j.sbspro.2009.01.316
  • Vroom, V. (1964). Work and motivation. Wiley.
  • Worden, J., Hinton, C., & Fischer, K. (2011). What Does the Brain Have to Do with Learning?. Phi Delta Kappan, 92(8), 8-13. https://doi.org/10.1177/003172171109200803
  • Wulff, P., Hazari, Z., Petersen, S., & Neumann, K. (2018). Engaging young women in physics: An intervention to support young women’s physics identity development. Physical Review Physics Education Research, 14(2). https://doi.org/10.1103/physrevphyseducres.14.020113