Population Pharmacokinetic/Pharmacogenetic Model for Optimization of Efavirenz Therapy in Caucasian HIV-Infected Patients

  1. Sánchez, Almudena 1
  2. Cabrera, Salvador 12
  3. Domínguez-Gil, Alfonso 1
  4. Santos, Dolores 3
  5. García, María J. 3
  6. Valverde, M. Paz 1
  7. Fuertes, Aurelio 1
  1. 1 Hospital Universitario de Salamanca
    info

    Hospital Universitario de Salamanca

    Salamanca, España

    ROR https://ror.org/0131vfw26

  2. 2 Universidad Austral de Chile
    info

    Universidad Austral de Chile

    Valdivia, Chile

    ROR https://ror.org/029ycp228

  3. 3 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Antimicrobial Agents and Chemotherapy

ISSN: 0066-4804 1098-6596

Año de publicación: 2011

Volumen: 55

Número: 11

Páginas: 5314-5324

Tipo: Artículo

DOI: 10.1128/AAC.00194-11 GOOGLE SCHOLAR

Otras publicaciones en: Antimicrobial Agents and Chemotherapy

Resumen

ABSTRACTDespite extensive clinical experience with efavirenz (EFV), unpredictable interindividual variabilities in efficacy and toxicity remain important limitations associated with the use of this antiretroviral. The purpose of this study was to determine the factors affecting EFV pharmacokinetics and to develop a pharmacokinetic/pharmacogenetic (PK/PG) model in a Caucasian population of HIV-infected patients. In total, 869 EFV plasma concentrations from 128 HIV-infected patients treated with EFV were quantitatively assessed using a validated high-performance liquid chromatography technique. All patients were genotyped for 90 single nucleotide polymorphisms (SNPs) in genes coding for proteins involved in the metabolism and transport of EFV, using a MassArray platform provided by Sequenom. The influence of these polymorphisms on EFV pharmacokinetics and the effects of demographic, clinical, biochemical, lifestyle, and concurrent drug covariates were evaluated. Plasma concentrations were fitted by a one-compartment model, with first-order absorption and elimination using nonlinear mixed-effect modeling (NONMEM program). The CYP2B6*6 allele, multidrug resistance-associated protein 4 (MRP4) 1497C→T, and gamma-glutamyltranspeptidase (GGT) were identified as major factors influencing the apparent EFV oral clearance (CL/F), reducing the initial interindividual variability by 54.8%, according to the model CL/F = (12.2 − 0.00279·GGT)·0.602CYP2B6*6 [G/T]·0.354CYP2B6*6 [T/T]·0.793MRP4 1497C→T, where CYP2B6*6 [G/T], CYP2B6*6 [T/T], and MRP4 1497C→T take values of 0 or 1 to indicate the absence or presence of polymorphisms. The detailed genetic analysis conducted in this study identified two of 90 SNPs that significantly impacted CL/F, which might indicate that the remaining SNPs analyzed do not influence this PK parameter, at least in Caucasian populations with characteristics similar to those of our study population.

Referencias bibliográficas

  • Arab-Alameddine, (2009), Clin. Pharmacol. Ther., 85, pp. 485, 10.1038/clpt.2008.271
  • Beal, (2006)
  • Blanch, (2001), J. Acquir. Immune Defic. Syndr., 27, pp. 336, 10.1097/00042560-200108010-00003
  • Brendel, (2006), Pharm. Res., 23, pp. 2036, 10.1007/s11095-006-9067-5
  • Brundage, (2004), Antimicrob. Agents Chemother., 48, pp. 979, 10.1128/AAC.48.3.979-984.2004
  • Burger, (2006), Br. J. Clin. Pharmacol., 61, pp. 148, 10.1111/j.1365-2125.2005.02536.x
  • Cabrera, (2010), Clin. Drug Invest., 30, pp. 405, 10.1007/BF03256910
  • Cabrera, (2009), Antimicrob. Agents Chemother., 53, pp. 2791, 10.1128/AAC.01537-08
  • Cabrera, (2008), AIDS, 22, pp. 2549, 10.1097/QAD.0b013e3283189c07
  • Chen, (2010), Ther. Drug Monit., 32, pp. 573, 10.1097/FTD.0b013e3181ea953c
  • Cressey, (2007), Infect. Genet. Evol., 7, pp. 333, 10.1016/j.meegid.2006.08.004
  • Csajka, (2003), Clin. Pharmacol. Ther., 73, pp. 20, 10.1067/mcp.2003.22
  • Department of Health and Human Services Panel on Antiretroviral Guidelines for Adults and Adolescents. 25 October 2010, accession date. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents. HHS, Washington, DC. http://www.aidsinfo.nih.gov.
  • Di Iulio, (2009), Pharmacogenet. Genomics, 19, pp. 300, 10.1097/FPC.0b013e328328d577
  • Fellay, (2002), Lancet, 359, pp. 30, 10.1016/S0140-6736(02)07276-8
  • Food and Drug Administration. 15 September 2010, accession date. Sustiva label information, approved 18 August 2008. FDA, Washington, DC. www.fda.gov/cder/foi/label/2008/020972s030,021360s019lbl.pdf.
  • Fumaz, (2005), J. Acquir. Immune Defic. Syndr., 38, pp. 560, 10.1097/01.qai.0000147523.41993.47
  • Gallego, (2004), Infect. Dis., 38, pp. 430, 10.1086/380791
  • Gatanaga, (2007), Infect. Dis., 45, pp. 1230, 10.1086/522175
  • Haas, (2009), Infect. Dis., 199, pp. 872, 10.1086/597125
  • Haas, (2004), AIDS, 18, pp. 2391
  • Haas, (2005), Infect. Dis., 192, pp. 1931, 10.1086/497610
  • Hasse, (2005), Infect. Dis., 40, pp. e22, 10.1086/427031
  • Ingelman-Sundberg, (1999), Trends Pharmacol. Sci., 20, pp. 342, 10.1016/S0165-6147(99)01363-2
  • Jonsson, (1999), Comput. Methods Programs Biomed., 58, pp. 51, 10.1016/S0169-2607(98)00067-4
  • Kappelhoff, (2005), Clin. Pharmacokinet., 44, pp. 849, 10.2165/00003088-200544080-00006
  • Kappelhoff, (2005), Antivir. Ther., 10, pp. 145
  • Kappelhoff, (2005), Antivir. Ther., 10, pp. 489
  • Knobel, (2002), AIDS, 16, pp. 605, 10.1097/00002030-200203080-00012
  • Kwara, (2009), AIDS, 23, pp. 2101, 10.1097/QAD.0b013e3283319908
  • Kwara, (2009), Br. J. Clin. Pharmacol., 67, pp. 427, 10.1111/j.1365-2125.2009.03368.x
  • Leger, (2009), Infect. Dis., 200, pp. 955, 10.1086/605126
  • Marzolini, (2001), AIDS, 15, pp. 71, 10.1097/00002030-200101050-00011
  • Motsinger, (2006), Pharmacogenet. Genomics, 16, pp. 837, 10.1097/01.fpc.0000230413.97596.fa
  • Mukonzo, (2009), Br. J. Clin. Pharmacol., 68, pp. 690, 10.1111/j.1365-2125.2009.03516.x
  • Núñez, (2001), J. Acquir. Immune Defic. Syndr., 28, pp. 399, 10.1097/00126334-200112010-00015
  • Nyakutira, (2008), Eur. J. Clin. Pharmacol., 64, pp. 357, 10.1007/s00228-007-0412-3
  • Owen, (2006), Infect. Dis. Rep., 8, pp. 401, 10.1007/s11908-006-0052-2
  • Pereira, (2008), Ther. Drug Monit., 30, pp. 60, 10.1097/FTD.0b013e318160ce76
  • Pfister, (2003), Antimicrob. Agents Chemother., 47, pp. 130, 10.1128/AAC.47.1.130-137.2003
  • Puzantian, (2002), Pharmacotherapy, 22, pp. 930, 10.1592/phco.22.11.930.33624
  • Ribaudo, (2010), Infect. Dis., 202, pp. 717, 10.1086/655470
  • Rivero, (2007), J. Antimicrob. Chemother., 59, pp. 342, 10.1093/jac/dkl524
  • Rodríguez-Nóvoa, (2005), AIDS, 7, pp. 103
  • Rodriguez-Novoa, (2005), Infect. Dis., 40, pp. 1358, 10.1086/429327
  • Rotger, (2006), Curr. HIV/AIDS Rep., 3, pp. 118, 10.1007/BF02696655
  • Rotger, (2007), Clin. Pharmacol. Ther., 81, pp. 557, 10.1038/sj.clpt.6100072
  • Saitoh, (2007), J. Acquir. Immune Defic. Syndr., 45, pp. 280
  • Saitoh, (2005), AIDS, 19, pp. 371, 10.1097/01.aids.0000161766.13782.2f
  • Sistonen, (2005), Clin. Chem., 51, pp. 1291, 10.1373/clinchem.2004.046466
  • SPSS Inc, (2006)
  • Staszewski, (1999), N. Engl. J. Med., 341, pp. 1865, 10.1056/NEJM199912163412501
  • Stöhr, (2008), Antivir. Ther., 13, pp. 675
  • Torno, (2008), Pharmacotherapy, 28, pp. 782, 10.1592/phco.28.6.782
  • Tsuchiya, (2004), Biochem. Biophys. Res. Commun., 319, pp. 1322, 10.1016/j.bbrc.2004.05.116
  • Wang, (2006), Pharmacogenet. Genomics, 16, pp. 191
  • Ward, (2003), J. Pharmacol. Exp. Ther., 306, pp. 287, 10.1124/jpet.103.049601
  • World Health Organization. 24 October 2010, accession date. Antiretroviral therapy for HIV infection in adults and adolescents: recommendations for a public health approach (2006 revision). WHO, Geneva, Switzerland. http:www.who.int/hiv/pub/guidelines/artadultguidelines.pdf.