The Mg/(Fe + Mg) ratio and the Ti and A site contents of tourmaline as promising indicators of granitic magma evolution

  1. Isabel Ribeiro da Costa 1
  2. Isabel Margarida Horta Ribeiro Antunes 2
  3. Clemente Récio 3
  1. 1 Universidade de Lisboa
    info

    Universidade de Lisboa

    Lisboa, Portugal

    ROR https://ror.org/01c27hj86

  2. 2 Universidade do Minho
    info

    Universidade do Minho

    Braga, Portugal

    ROR https://ror.org/037wpkx04

  3. 3 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Journal:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Year of publication: 2021

Issue Title: New developments in Geochemistry. A tribute to Carmen Galindo

Volume: 47

Issue: 1-2

Pages: 307-321

Type: Article

DOI: 10.1007/S41513-020-00158-5 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Journal of iberian geology: an international publication of earth sciences

Abstract

In the recent past, important research has shown how tourmaline can be used as a petrogenetic indicator in pegmatite rocks and related mineralization. Previous studies have demonstrated that tourmaline composition may be a useful guide to ascertain the degree of evolution and oxygen fugacity of host granitic rocks from the Variscan orogen in the Central Iberian Zone (CIZ). Following those promising preliminary conclusions, we have investigated whether these results hold for tourmaline-bearing granitic rocks from other geotectonic contexts, enlarging our scope to include whole-rock stable isotope analyses. The data collected so far has shown that, whereas most tourmaline components and component ratios seem essentially impervious to granitic magma composition and oxygen fugacity, there are a few exceptions, such as the Mg/(Mg + Fe) ratio and Ti contents of tourmaline that show clear variation with the degree of evolution and oxygen fugacity of the host granitic rocks. From both mineralogical and petrological points of view, it seems that these compositional features in tourmaline may be used as indicators of the degree of evolution and of specific characteristics of the granitic magmas that produced them.

Bibliographic References

  • Antunes, I. M. H. R. (2006). Mineralogia, petrologia e geoquímica de rochas granitóides da área de Castelo Branco—Idanha-a-Nova. Unpubl. PhD Thesis, Universidade de Coimbra, 453 pp.
  • Borthwick, J., & Harmon, R. S. (1982). A note regarding ClF3 as an alternative to Br F5 for oxygen isotope analysis. Geochimica et Cosmochimica Acta, 46, 1665–1668.
  • Broska, I., & Uher, P. (2001). Whole-rock chemistry and genetic typology of the west Carpathian Variscan granites. Geol. Carpathica, 52, 78–90.
  • Chappell, B. W., & Hine, R. (2006). The Cornubian Batholith: an example of magmatic fractionation on a crustal scale. Resource Geology, 56, 203–244.
  • Chappell, B. W., & White, A. J. R. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48, 489–499.
  • Clayton, R. N., & Mayeda, T. K. (1963). The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27, 43–52.
  • Dostal, J., & Chatterjee, A. K. (2000). Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 163, 207–218.
  • Dupuy, C., Liotard, J. M., & Dostal, J. (1992). Zr-Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochimica et Cosmochimica Acta, 56, 2417–2423.
  • Emmermann, R., Daieva, L., & Schneier, J. (1975). Petrologic significance of rare earth distribution in granites. Contributions to Mineralogy and Petrology, 52, 267–283.
  • Hulsbosch, N., Hertogen, J., Dewaele, S., André, L., & Muchez, P. (2014). Alkali metal and rare earth element evolution of rockforming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta, 132, 349–374.
  • Jiang, S.-Y., Radvanec, M., Nakamura, E., Palmer, M., Kobayashi, K., Zhao, H. X., & Zhao, K. D. (2008). Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: constraints on magmatic and metamorphic fluid evolution. Lithos, 106, 1–11.
  • Jolliff, B. L., Papike, J. J., & Shearer, C. K. (1986). Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. American Mineralogist, 71, 472–500.
  • Linnen, R. L. (1998). The solubility of Nb–Ta–Zr–Hf–W in granitic melts with Li and Li-F: Constraints for mineralization in rare metal granites and pegmatites. Economic Geology, 93, 1013–1025.
  • Linnen, R. L., & Keppler, H. (2002). Melt composition control of Zr/ Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, 66, 3293–3301.
  • London, D., & Manning, D. A. C. (1995). Chemical variation and significance of tourmaline from southwest England. Economic Geology, 90, 495–519.
  • London, D., Morgan, G. B. VI, Wolf, M. B. (1996). Boron in granitic rocks and their contact aureoles. In Grew, E.S. & Anovitz, L.M. (eds.), Boron: mineralogy, petrology and geochemistry. Rev. Mineral., 33, 299–330.
  • Marks, M. A. W., Marschall, H. R., Schuhle, P., Guth, A., Wenzel, T., Jacob, D. E., et al. (2013). Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): the importance of major element composition, sector zoning, and fluid or melt composition. Chemical Geology, 344, 73–90.
  • Martins, B., Morgado, C., Barbosa, J., Roseiro, J. (2015). Um mistério a resolver - os granitos hiperaluminosos associados a orogenias diferentes contêm turmalinas quimicamente diferentes? Unpubl. Project Report, ULisboa, Lisbon, Portugal, p. 46.
  • Meyer, F. M., Robb, L. J., Reimold, W. U., & de Bruiyn, H. (1994). Contrasting low- and high-Ca granites in the Archaean Barberton Mountain Land, southern Africa. Lithos, 32, 63–76.
  • Neiva, A. M. R. (1971). Geochemistry of late stage granitic rocks from northern Portugal. Unpubl. PhD Thesis, University of Cambridge, U.K., 151 pp.
  • Neiva, A. M. R. (1974). Geochemistry of tourmaline (schorlite) from granites, aplites and pegmatites from northern Portugal. Geochimica et Cosmochimica Acta, 38, 1307–1317.
  • Neiva, A. M. R., Silva, M. M. V. G., & Gomes, M. E. P. (2007). Crystal chemistry of tourmaline from Variscan granites, associated tin-tungsten- and gold deposits, and associated metamorphic and metasomatic rocks from northern Portugal. Neues Jahrbuch für Mineralogie-Abhandlungen, 184, 45–76.
  • Pesquera, A., Torres-Ruiz, J., García-Casco, A., & Gil-Crespo, P. P. (2013). Evaluating the controls on tourmaline formation in granitic systems—A case study on peraluminous granites from the Central Iberian Zone (CIZ), western Spain. Journal of Petrology, 54, 609–634.
  • Pesquera, A., Torres-Ruiz, J., Gil-Crespo, P. P., & Jiang, S.-Y. (2005). Petrographic, chemical and B-isotopic insights into the origin of tourmaline-rich rocks and boron recycling in the Martinamor antiform (Central Iberian Zone, Spain). Journal of Petrology, 46, 1013–1044.
  • Ribeiro da Costa, I., & Antunes, I. M. R. H. (2019). Sensibility of tourmaline chemistry to granitic magma composition and oxygen fugacity. In: Proceed. Conf. of Arabian J. Geosci., Sousse, Tunisia, November, 2019 (4pp.).
  • Ribeiro da Costa, I., Mourão, C., Récio, C., Guimarães, F., Antunes, I. M., Farinha Ramos, J., et al. (2014). Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (central Portugal)—Genetic implications of crystal-chemical and isotopic features. Contributions to Mineralogy and Petrology, 167, 993–1015.
  • Rockhold, J. R., Nabelek, P. I., & Glascock, M. D. (1987). Origin of rhythmic layering in the Calamity Peak satellite pluton of the Harney Peak Granite, South Dakota: The role of boron. Geochimica et Cosmochimica Acta, 51, 487–496.
  • Rozendaal, A., & Bruwer, L. (1995). Tourmaline nodules: indicators of hydrothermal alteration and Sn-Zn-(W) mineralization in the Cape Granite Suite, South Africa. Journal of African Earth Sciences, 21, 141–155.
  • Rudnick, R. L., McDonough, W. F., & Chappell, B. W. (1993). Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth and Planetary Science Letters, 114, 463–475.
  • Sharp, Z. (1990). A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta, 54, 1353–1357.
  • Smith, M. P., & Yardley, B. W. D. (1996). The boron isotopic composition of tourmaline as a guide to fluid processes in the southwerstern England orefield: An ion microprobe study. Geochimica et Cosmochimica Acta, 60, 1415–1427.
  • Steven, N. M., & Moore, J. M. (1995). Tourmalinite mineralization in the Late Proterozoic Kuiseb Formation of the Damara orogen, central Namibia: Evidence for a replacement origin. Economic Geology, 90, 1098–1117.
  • Trumbull, R. B., & Chaussidon, M. (1999). Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite-pegmatite system in Swaziland. Chemical Geology, 153, 125–137.
  • van Hinsberg, V. J., Henry, D. J., & Dutrow, B. L. (2011). Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements, 7, 327–332.
  • Wang, R. C., Fontan, F., Xu, S. J., Chen, X. M., & Monchoux, P. (1996). Hafnian zircon from the apical part of the Suzhou granite, China. The Canadian Mineralogist, 34, 1001–1010.
  • Wise, M. A., & Brown, C. D. (2010). Mineral chemistry, petrology and geochemistry of the Sebago granite–pegmatite system, southern Maine, USA. Journal of Geosciences., 55, 3–26.
  • Wolff, J. A. (1984). Variation in Nb/Ta during differentiation of phonolitic magma, Tenerife, Canary Islands. Geochimica et Cosmochimica Acta, 48, 1345–1348.