The Faja Eruptiva of the Eastern Puna and the Sierra de Calalaste, NW ArgentinaU-Pb zircon chronology of the early Famatinan orogeny
- C. Casquet 1
- P. Alasino 2
- C. Galindo 1
- R. Pankhurst
- J. Dahlquist 3
- E. G. Baldo 3
- C. Ramacciotti 3
- S. Verdecchia 3
- M. Larrovere 2
- C. W. Rapela 4
- C. Recio 5
-
1
Universidad Complutense de Madrid
info
- 2 Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja
- 3 Centro de Investigaciones en Ciencias de La Tierra
- 4 Centro de Investigaciones Geológicas
-
5
Universidad de Salamanca
info
ISSN: 1886-7995, 1698-6180
Year of publication: 2021
Issue Title: New developments in Geochemistry. A tribute to Carmen Galindo
Volume: 47
Issue: 1-2
Pages: 15-37
Type: Article
More publications in: Journal of iberian geology: an international publication of earth sciences
Abstract
The Famatinian is a segment of the Ordovician Terra Australis accretionary orogen that stretched along the SW Margin of Gondwana from Australia to Colombia. The present knowledge of this orogenic segment still is incomplete. We present geochemistry and U–Pb SHRIMP zircon geochronology of igneous and metamorphic rocks from the Central Famatinian Domain, one of the several domains recognized by Rapela et al. (Earth Sci Rev 187: 259–285. https://doi.org/10.1016/j.earscirev.2018.10.006) that includes the northern Sierras Pampeanas and the southern Puna of North West Argentina. Six samples of igneous rocks (peraluminous granitoids, mafic and felsic rocks, volcanic/subvolcanic rocks) and six samples of associated meta-sedimentary rocks, all from the Puna were dated and chemically analysed. The results indicate that the Central Famatinian Domain is in turn a composite domain that includes a Cordilleran-type magmatic arc (ca. 470 Ma) and a yuxtaposed fault-bounded older terrain formed in an extensional setting at the very start of the Famatinian orogeny, between 480 and 485 Ma, i.e., shortly after the SW Gondwana margin switched from passive to active. This short period of extension with related sedimentation, volcanism and mainly granitoid plutonism has not been previously recognised. It occurred before the Cordilleran-type magmatic arc -that resulted from a magmatic flare-up between ca. 473 and 468 Ma-, set up coincident with a contractional phase. The evidence confirms that accretionary orogeny results from tectonic switching (pull–push orogeny) and that the extensional and contractional phases are of relatively short duration.
Funding information
Funders
-
Ministerio de Ciencia, Innovación y Universidades
- CGL2016-76439-P
-
FONCyT
- PICT-0619
Bibliographic References
- Aceñolaza, F., Toselli, A. & Durand, F. (1976). Estratigrafía y paleontología de la región del Hombre Muerto, provincia de Catamarca, Argentina. Actas 1° Congreso Argentino de Paleontología y Bioestratigrafía, 1, 109–123. Tucumán.
- Adams, C. J., Miller, H., Aceñolaza, F. G., Toselli, A. J., & Griffin, W. L. (2011). The Pacific Gondwana margin in the late Neoproterozoic– early Paleozoic: detrital zircon U–Pb ages from metasediments in northwest Argentina reveal their maximum age, provenance and tectonic setting. Gondwana Research, 19, 71–83. https://doi.org/10.1016/j.gr.2010.05.002.
- Adams, C., Miller, H., Toselli, A. J., & Griffin, W. L. (2008). The Puncoviscana Formation of northwest Argentina: U–Pb geochronology of detrital zircons and Rb–Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 247, 341–352. https://doi.org/10.1127/0077-7749/2008/0247-0341.
- Alasino, P. H., Casquet, C., Larrovere, M. A., Pankhurst, R. J., Galindo, C., Dahlquist, J. A., et al. (2014). The evolution of a mid-crustal termal aureole at Cerro Toro, Sierra de Famatina, NW Argentina. Lithos, 190(191), 154–172. https ://doi.org/10.1016/j.litho s.2013.12.006.
- Bahlburg, H., Berndt, J. & Gerdes, A. (2016). The ages and tectonic setting of the Faja Eruptiva de la Puna Oriental, Ordovician, NW Argentina. Lithos, 256–25, 41–54, ISSN 0024-4937, https://doi.org/10.1016/j.litho s.2016.03.018.
- Bahlburg, H., & Hervé, F. (1997). Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile. Geological Society of America Bulletin, 109(7), 869–884. https://doi.org/10.1130/0016-7606(1997)109%3c086 9:GEATT O%3e2.3.CO;2.
- Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, J. N. D., Korsch, R. J., et al. (2003). TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology. Geochimica et Cosmochimica Acta, 97, 70–87.
- Casquet, C., Dahlquist, J. A., Verdecchia, S. O., Baldo, E. G., Galindo, C., Rapela, C. W., et al. (2018). Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa. Earth-Science Reviews, 177, 209–225. https ://doi.org/10.1016/j.earsc irev.2017.11.013.
- Casquet, C., Fanning, C. M., Galindo, C., Pankhurst, R. J., Rapela, C. W., & Torres, P. (2010). The Arequipa Massif of Peru: new SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian. Journal of South American Earth Sciences, 29, 128–142. https ://doi.org/10.1016/j.jsame s.2009.08.0.
- Casquet, C., Rapela, C. W., Pankhurst, R. J., Baldo, E. G., Galindo, C., Fanning, C. M. &, Dahlquist, J. A. (2012a). Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina. Gondwana Research, 22(2), 664–673. ISSN 1342 937X. https://doi.org/10.1016/j.gr.2012.05.001.
- Casquet, C., Rapela, C. W., Pankhurst, R. J., Baldo, E. G., Galindo, C., Fanning, C. M., et al. (2012b). A history of Proterozoic terranes in southern South America: from Rodinia to Gondwana. Geoscience Frontiers, 3, 137–145. https://doi.org/10.1016/j.gsf.2011.11.004.
- Cawood, P. A. (2005). Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews, 69, 249–279. https://doi.org/10.1016/j.earsc irev.004.09.001.
- Cawood, P. E., Kröner, A., Collins, W. J., Kusky, T.M., Mooney, W. D. & Windley, B. F. (2009). Accretionary orogens through Earth history. In P.A. Cawood & A. Kröner (Eds), Earth Accretionary Systems in Space and Time (pp. 1–36). London: Geological Society London, Special Publication No. 318. https ://doi.org/10.1144/ sp318 .1.
- Cisterna, C. E. & Coira, B. (2017). Registros volcánicos del magmatismo ordovícico en las provincias de Catamarca y La Rioja, noroeste de Argentina. Herramientas para la reconstrucción del arco Famatiniano. In: Muruaga, C. M., y Grosse, P. (Eds.), Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio del XX Congreso Geológico Argentino, San Miguel de Tucumán (pp. 414–433). ISBN 978-987-42-6666-8.
- Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.-X. (2013). The ICS International Chronostratigraphic Chart. Episodes, 36, 199–204.
- Coira, B., Davidson, J., Mpodozis, C., & Ramos, V. (1982). Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth-Science Reviews, 18(3–4), 303–332. ISSN 0012- 8252. https://doi.org/10.1016/0012-8252(82)90042 -3.
- Collins, W. J. (2002). Hot orogens, tectonic switching, and creation of continental crust. Geology, 30, 535–538.
- Collo, G., Astini, R. A., Cawood, P. A., Buchan, C., & Pimentel, M. (2009). U–Pb detrital zircon ages and Sm–Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: Implications for late Neoproterozoic–early Palaeozoic evolution of the proto-Andean margin of Gondwana. Journal of the Geological Society of London, 166, 303–319. https://doi.org/10.1144/0016-76492 008-051.
- Conti, C. M., Rapalini, A. E., Coira, B., & Koukharsky, M. (1996). Paleomagnetic evidence of an early Paleozoic rotated terrane in northwest Argentina: A clue for Gondwana–Laurentia interaction? Geology, 24, 953–956. https://doi.org/10.1130/0091-7613(1996)024%3c095 3:PEOAE P%3e2.3.CO;2.
- Cristofolini, E. A., Otamendi, J. E. Ducea, M. N., Pearson, D. M., Tibaldi, A. M., & Baliani, I. (2012). Detrital zircon U–Pb ages of metasedimentary rocks from Sierra de Valle Fértil: Entrapment of Middle and Late Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc. Journal of South American Earth Sciences, 37, 77–94. ISSN 0895-9811. https:// doi.org/10.1016/j.jsame s.2012.02.001.
- Cumming, G. L., & Richards, J. R. (1975). Ore lead isotope ratios in a continuously changing Earth. Earth and Planetary Science Letters, 28, 155–171.
- Ducea, M. N., Bergantz, G. W., Crowley, J. L., & Otamendi, J. (2017). Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology. https://doi.org/10.1130/G3872 6.1.
- Durney, D. W., & Kisch, H. J. (1994). A field classification and intensity scale for first-gneration cleavages. AGSO Journal of Australian Geology and Geophysics, 15, 257–295.
- Faure, G. & Mensing, T. M. (2004). Isotopes: Principles and Applications, (3rd Edition) Berlin: Springer. ISBN: 978-0-471-38437-3. 928.
- Frost, B. R., & Frost, C. D. (2008). A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49, 1955–1969. https://doi.org/10.1093/petro logy/egn05 4.
- Hauser, N., Matteini, M., Omarini, R., & y Pimentel, M. M. (2011). Combined U–Pb and Lu–Hf isotope data on turbidites of the Paleozoic basement of NW Argentina and petrology of associated igneous rocks: Implications for the tectonic evolution of western Gondwana between 560 and 460 Ma. Gondwana Research, 19, 100–127. ISSN 1342-937X. https://doi.org/10.1016/j.gr.2010.04.002.
- Hongn, F. D., & Riller, U. (2007). Tectonic evolution of the western margin of Gondwana inferred from syntectonic emplacement of Paleozoic granitoid plutons in northwest Argentina. The Journal of Geology, 115, 163–180. https://doi.org/10.1086/510644.
- Hongn, F. D., Tubía, J. M., Aranguren, A.,Vegas, N., Mon, R. & Dunning, G. R. (2010). Magmatism coeval with lower Paleozoic shelf basins in NW-Argentina (Tastil batholith): Constraints on current stratigraphic and tectonic interpretations. Journal of South American Earth Sciences, 29, 289–305. ISSN 0895-9811. https ://doi. org/10.1016/j.jsame s.2009.07.008.
- Ickert, R. B., Hiess, J., Williams, I. S., Holden, P., Ireland, T. R., Lanc, P., et al. (2008). Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicateglass reference materials and zircon from contrasting granites. Chemical Geology, 257(1–2), 114–128. https://doi.org/10.1016/j.chemg eo.2008.08.024.
- Kirschbaum, A., Hongn, F., & Menegatti, N. (2006). The Cobres plutonic complex, eastern Puna (NW Argentina): Petrological and structural constraints for lower Paleozoic magmatism. Journal of South American Earth Sciences, 21, 252–266.
- Larrovere, M. A., de los Hoyos, C. R., Willner, A. P., Verdecchia, S. O., Baldo, E. G., Casquet, C., et al. (2019). Mid-crustal deformation in a continental margin orogen: structural evolution and timing of the Famatinian Orogeny, NW Argentina. Journal of the Geological Society, 177, 233–257. https://doi.org/10.1144/jgs2018-230.
- Lister, G. & Forster, M. (2009). Tectonic mode switches and the nature of orogenesis. Lithos, 113(1–2), 274–291. ISSN 0024-4937. https://doi.org/10.1016/j.litho s.2008.10.024.
- Lucassen, F., Becchio, R., Wilke, H. G., Franz, G., Thirlwall, M. F., Viramonte, J., et al. (2000). Proterozoic-Paleozoic development of the basement of the Central Andes (18–26°S)—A mobile belt of the South American craton. Journal of South American Earth Sciences, 13, 697–715. https ://doi.org/10.1016/S0895 -9811(00)00057 -2.
- Ludwig, K. R. (2003). Isoplot/Ex Version 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication No. 4, 2455 Ridge Road, Berkeley CA 94709, USA.
- Lugmair, G. W., & Carlson, R. E. (1978). The Sm–Nd history of KREEP. In: Proc. 9th Lunar Planetary Science Conference (pp. 689–704).
- Lugmair, G. W., & Marti, K. (1978). Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39, 349–357. https ://doi.org/10.1016/0012-821X(78)90021 -3.
- Méndez, V., Navarini, A., Plaza, D., & Viera, O. (1973). Faja Eruptiva de la Puna Oriental. V Congreso Geológico Argentino, Córdoba, Actas, 4, 89–100.
- Miller, C. F., Meschter, S. Mc D, & Russell, W. M. (2003). Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31, 529–532. https ://doi.org/10.1130/00917 613(2003)031%3c052 9:HACGI O%3e2.0.CO;2.
- Moya, M. C. (2015). La “Fase Oclóyica” (Ordovícico Superior) en el noroeste argentino. Interpretación histórica y evidencias en contrario. Serie Correlación Geológica, 31, 73–110. Contribuciones a la Geología Argentina Tucumán, ISSN 1514-4186-ISSN on-line 1666-9479.
- Murra, J. A., Casquet, C., Locati, F., Galindo, C., Baldo, E. G., Pankhurst, R. J., et al. (2016). Isotope (Sr, C) and U-Pb SHRIMP zircon geochronology of marble-bearing sedimentary series in the Eastern Sierras Pampeanas, Argentina. Constraining the SW Gondwana margin in Ediacaran to early Cambrian times. Precambrian Research, 281, 602–617. https ://doi.org/10.1016/j.preca mres.2016.06.012.
- Naidoo, T., Zimmermann, U. & Vervoort, J. (2016). Pre-Pampean metasedimentary rocks from the Argentinian Puna: Evidence for the Ediacaran margin of Gondwana or the Arequipa–Antofalla– Western Pampeanas block. Precambrian Research, 280, 139–146. ISSN 0301-9268. https ://doi.org/10.1016/j.preca mres.2016.05.009.
- Niemeyer, H., Götze, J., Sanhueza, M. & Portilla, C. (2018). The Ordovician magmatic arc in the northern Chile-Argentina Andes between 21° and 26° south latitude. Journal of South American Earth Sciences, 81, 204–214. ISSN 0895-9811. https ://doi. org/10.1016/j.jsame s.2017.11.016.
- Ortiz, A., Hauser, N., Becchio, R., Suzaño, N., Nieves, A., Sola, A., Pimentel, M. & Reimold, W. (2017). Zircon U–Pb ages and Hf isotopes for the Diablillos Intrusive Complex, Southern Puna, Argentina: Crustal evolution of the Lower Paleozoic Orogen, Southwestern Gondwana margin. Journal of South American Earth Sciences, 80, 316–339, ISSN 0895-9811. https ://doi. org/10.1016/j.jsame s.2017.09.031.
- Otamendi, J. E., Cristofolini, E. A., Morosini, A., Armas, P., & Tibaldi, A. M. (2020). The geodynamic history of the Famatinian arc, Argentina: A record of exposed geology over the type section (latitudes 27°–33°). Journal of South American Earth Sciences. https ://doi.org/10.1016/j.jsame s.2020.10255 8.
- Otamendi, J. E., Ducea, M., & Bergantz, G. W. (2012). Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian Arc, Argentina. Journal of Petrology, 53(2012), 761–800. https ://doi.org/10.1093/petro logy/egr07 9.
- Otamendi, J. E., Ducea, M. N., Cristofolini, E. A., Tibaldi, A. M., Camilletti, G. C., & Bergantz, G. W. (2017). U–Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina, Journal of South American Earth Sciences, 76, 412–426. ISSN 0895-9811. https ://doi.org/10.1016/j. jsame s.2017.04.005.
- Otamendi, J. E., Tibaldi, A. M., Vujovich, G. I. & Viñao, G. A. (2008). Metamorphic evolution of migmatites from the deep Famatinian arc crust exposed in Sierras Valle Fértil–La Huerta, San Juan, Argentina. Journal of South American Earth Sciences, 25, 313–335. ISSN 0895-9811. https ://doi.org/10.1016/j.jsame s.2007.09.001.
- Palma, M. A., Parica, P., & Ramos, V. A. (1986). El granito Archibarca: su edad y significado tectónico, provincia de Catamarca. Revista de la Asociación Geológica Argentina, 41, 414–419.
- Pankhurst, R. J., Hervé, F., Fanning, C. M., Calderón, M., Niemeyer, H., Griem-Klee, S. & Soto, F. (2016). The pre-Mesozoic rocks of northern Chile: U–Pb ages, and Hf and O isotopes. Earth-Science Reviews, 152, 88–105. ISSN 0012-8252. https ://doi.org/10.1016/j. earsc irev.2015.11.009.
- Pankhurst, R. J., Rapela, C. W., & Fanning, C. M. (2000). Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91, 151–168. https ://doi.org/10.1017/S0263 59330 00073 43.
- Ramacciotti, C. D., Baldo, E. G., & Casquet, C. (2015). U–Pb SHRIMP detrital zircon ages from the Neoproterozoic Difunta Correa Metasedimentary Sequence (Western Sierras Pampeanas, Argentina): Provenance and paleogeographic implications. Precambrian Research, 270, 39–49. https ://doi.org/10.1016/j.preca mres.2015.09.008.
- Ramacciotti, C. D., Casquet, C., Baldo, E. G., Galindo, C., Pankhurst, R. J., Verdecchia, S. O., et al. (2018). A Cambrian mixed carbonate siliciclastic Platform in SW Gondwana: Evidence from the Western Sierras Pampeanas (Argentina) and implications for the early Paleozoic paleogeography of the proto-Andean margin. International Journal of Earth Sciences, 107, 2605–2625. https ://doi.org/10.1007/s0053 1-018-1617-7.
- Rapela, C. W., Coira, B., Toselli, A., & Saavedra, J. (1992). The lower Paleozoic magmatism of southwestern Gondwana and the evolution of famatinian orogen. International Geology Review, 34, 1–142. https ://doi.org/10.1080/00206 81920 94656 57.
- Rapela, C. W., Pankhurst, R. J., Casquet, C., Dahlquist, J. A., Fanning, M. C., Baldo, E. G., et al. (2018). A review of the Famatinian Ordovician magmatism in southern South America: Evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth-Science Reviews, 187, 259–285. https ://doi.org/10.1016/j.earsc irev.2018.10.006.
- Rapela, C. W., Pankhurst, R. J., Casquet, C., Fanning, C. M., Baldo, E. G., González-Casado, J. M., et al. (2007). The Río de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews, 83, 49–82. https://doi.org/10.1016/j.earsc irev.2007.03.004.
- Rapela, C. W., Verdecchia, S. O., Casquet, C., Pankhurst, R. J., Baldo, E. G., Galindo, C., et al. (2016). Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Research, 32, 193–201. https://doi.org/10.1016/j.gr.2015.02.010.
- Rubatto, D. (2017). Zircon: the metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83, 261–295.
- Schnurr, W. B. W., Risse, A., Trumbull, R. B., & Munier, K. (2006). Digital Geological Map of the Southern and Central Puna Plateau, NW Argentina. In O. Oncken, et al. (Eds.), The Andes. Frontiers in Earth sciences. Berlin: Springer.
- Seggiaro, R. E., Hongn, F. D., Castillo, A., Pereyra, F., Villegas D. & Martínez, L. (2007). Hoja Geológica 2569-IV, Antofalla. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín 343, Buenos Aires.
- Suzaño, N., Becchio, R., Sola, A., Ortiz, A., Nieves, A., Quiroga, M. & Fuentes, G. (2017a). The role of magma mixing in the evolution of the Early Paleozoic calc-alkaline granitoid suites. Eastern magmatic belt, Puna, NW Argentina. Journal of South American Earth Sciences, 76, 25–46. ISSN 0895-9811. https://doi.org/10.1016/j. jsame s.2017.02.008.
- Suzaño, N. O., Sola, A. M., Elortegui Palacios, J., Becchio, R. A., Ortiz, A., Nieves, A. A. & Quiroga, M. F. (2017b). Magmatismo plutónico del Paleozoico inferior de Salta y Jujuy. In: C.M. Muruaga, & P. Grosse (Eds.), Ciencias de la Tierra y Recursos Naturales del NOA. San Miguel de Tucumán: Relatorio del XX Congreso Geológico Argentino (pp. 323–351). ISBN 978-987- 42-6666-8 323.
- Toselli, A., Sial, A. & Rossi, J. N. (2002). Ordovician magmatism of the Sierras Pampeanas, Sistema de Famatina and Cordillera Oriental, NW of Argentina. Aspects of the Ordovician System in Argentina. INSUGEO, Serie de Correlación Geológica, 16, 313–326. Tucumán, ISSN 1514-4186–ISSN on line 1666-9479.
- Verdecchia, S. O. (2009). Las metamorfitas de baja presión vinculadas al arcomagmático famatiniano: las unidades metamórficas de la Quebrada de La Cébila y el borde oriental del Velasco. Provincia de La Rioja, Argentina. Ph.D. Thesis, Universidad Nacional de Córdoba.
- Verdecchia, S. O., Casquet, C., Baldo, E. G., Pankhurst, R. J., Rapela, C., Fanning, C. M., et al. (2011). Mid- to Late Cambrian docking of the Rı´o de la Plata craton to southwestern Gondwana: Age constraints from U–Pb SHRIMP detrital zircon ages from Sierras de Ambato and Velasco (Sierras Pampeanas, Argentina). Journal of the Geological Society, London, 168, 1061–1071. https ://doi. org/10.1144/0016-76492 010-143.1061.
- Wegmann, M. I., Riller, U., Hongn, F. D., Glodny, J. & Oncken, O. (2008). Age and kinematics of ductile deformation in the Cerro Durazno area, NW Argentina: Significance for orogenic processes operating at the western margin of Gondwana during Ordovician—Silurian times. Journal of South American Earth Sciences, 26, 78–90,. ISSN 0895-9811. https ://doi.org/10.1016/j. jsame s.2007.12.004.
- Weinberg, R. F., Becchio, R., Farias, P., Suzaño, N., & Sola, A. (2018). Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana. Earth-Science Reviews, 187, 219–247. https ://doi.org/10.1016/j.earsc irev.2018.10.001.
- Williams, I. S., & Claesson, S. (1987). Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology, 97, 205–217. https ://doi.org/10.1007/BF003 71240 .
- Yakymchuck, C., Kirkland, C. L., & Clark, C. (2018). Th/U ratios in metamorphic zircons. Journal of Metamorphic Geology, 36, 715–737. https ://doi.org/10.1111/jmg.12307
- Zimmerman, U., Niemeyer, H., & Meffre, S. (2010). Revealing the continental margin of Gondwana: The Ordovician arc of the Cordon de Lila (northern Chile). International Journal of Earth Sciences (Geol Rundsch), 99, 39–56. https ://doi.org/10.1007/s0053 1-009-0483-8.
- Zimmermann, U., Bahlburg, H., & Mezger, K. (2014). Origin and age of ultramafic rocks and gabbros in the southern Puna of Argentina: an alleged Ordovician suture revisited. International Journal of Earth Sciences (Geol Rundsch), 103, 1023–1036. https ://doi. org/10.1007/s0053 1-014-1020-y.