The Second Oncogenic Hit Determines the Cell Fate of ETV6-RUNX1 Positive Leukemia

  1. Rodríguez-Hernández, Guillermo 12
  2. Casado-García, Ana 12
  3. Isidro-Hernández, Marta 12
  4. Picard, Daniel 3
  5. Raboso-Gallego, Javier 12
  6. Alemán-Arteaga, Silvia 12
  7. Orfao, Alberto 12
  8. Blanco, Oscar 24
  9. Riesco, Susana 25
  10. Prieto-Matos, Pablo 25
  11. García Criado, Francisco Javier 26
  12. García Cenador, María Begoña 26
  13. Hock, Hanno 7
  14. Enver, Tariq 8
  15. Sanchez-Garcia, Isidro 12
  16. Vicente-Dueñas, Carolina 25
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 Institute for Biomedical Research of Salamanca, Salamanca, Spain
  3. 3 Heinrich Heine University Düsseldorf
    info

    Heinrich Heine University Düsseldorf

    Düsseldorf, Alemania

    ROR https://ror.org/024z2rq82

  4. 4 Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain
  5. 5 Department of Pediatrics, Hospital Universitario de Salamanca, Salamanca, Spain
  6. 6 Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
  7. 7 Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, and Harvard Stem Cell Institute, Boston, MA, United States
  8. 8 Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
Revista:
Frontiers in Cell and Developmental Biology

ISSN: 2296-634X

Año de publicación: 2021

Volumen: 9

Tipo: Artículo

DOI: 10.3389/FCELL.2021.704591 GOOGLE SCHOLAR

Otras publicaciones en: Frontiers in Cell and Developmental Biology

Resumen

ETV6-RUNX1 is almost exclusively associated with childhood B-cell acute lymphoblastic leukemia (B-ALL), but the consequences of ETV6-RUNX1 expression on cell lineage decisions during B-cell leukemogenesis are completely unknown. Clinically silent ETV6-RUNX1 preleukemic clones are frequently found in neonatal cord blood, but few carriers develop B-ALL as a result of secondary genetic alterations. The understanding of the mechanisms underlying the first transforming steps could greatly advance the development of non-toxic prophylactic interventions. Using genetic lineage tracing, we examined the capacity of ETV6-RUNX1 to instruct a malignant phenotype in the hematopoietic lineage by cell-specific Cre-mediated activation of ETV6-RUNX1 from the endogenous Etv6 gene locus. Here we show that, while ETV6-RUNX1 has the propensity to trigger both T- and B-lymphoid malignancies, it is the second hit that determines tumor cell identity. To instigate leukemia, both oncogenic hits must place early in the development of hematopoietic/precursor cells, not in already committed B-cells. Depending on the nature of the second hit, the resulting B-ALLs presented distinct entities that were clearly separable based on their gene expression profiles. Our findings give a novel mechanistic insight into the early steps of ETV6-RUNX1+ B-ALL development and might have major implications for the potential development of ETV6-RUNX1+ B-ALL prevention strategies.

Referencias bibliográficas

  • Adzhubei, (2010), Nat. Methods, 7, pp. 248, 10.1038/nmeth0410-248
  • Alpar, (2015), Leukemia, 29, pp. 839, 10.1038/leu.2014.322
  • Andreasson, (2001), Cancer Genet. Cytogenet., 130, pp. 93, 10.1016/s0165-4608(01)00518-0
  • Boiers, (2018), Dev. Cell, 44, 10.1016/j.devcel.2017.12.005
  • Cobaleda, (2007), Nature, 449, pp. 473, 10.1038/nature06159
  • Cobaleda, Trends Immunol., 42, pp. 371, 10.1016/j.it.2021.03.004
  • Cobaleda, Nat. Rev. Immunol.
  • DePristo, (2011), Nat. Genet., 43, pp. 491, 10.1038/ng.806
  • Fisher, (2011), Genome Biol., 12, 10.1186/gb-2011-12-1-r1
  • Gilbertson, (2011), Cell, 145, pp. 25, 10.1016/j.cell.2011.03.019
  • Greaves, (2018), Nat. Rev. Cancer, 18, pp. 471, 10.1038/s41568-018-0015-6
  • Heltemes-Harris, (2011), J. Exp. Med., 208, pp. 1135, 10.1084/jem.20101947
  • Hobeika, (2006), Proc. Natl. Acad. Sci. U S A., 103, pp. 13789, 10.1073/pnas.0605944103
  • Hong, (2008), Science, 319, pp. 336, 10.1126/science.1150648
  • Kantner, (2013), Neoplasia, 15, pp. 1292, 10.1593/neo.131310
  • Kilkenny, (2010), J. Pharmacol. Pharmacother., 1, pp. 94, 10.4103/0976-500x.72351
  • Kumar, (2009), Nat. Protoc., 4, pp. 1073, 10.1038/nprot.2009.86
  • Li, (2009), Bioinformatics, 25, pp. 1754, 10.1093/bioinformatics/btp324
  • Li, (2010), Bioinformatics, 26, pp. 589, 10.1093/bioinformatics/btp698
  • Li, (2009), Bioinformatics, 25, pp. 2078, 10.1093/bioinformatics/btp352
  • Liu, (2017), Nat. Genet., 49, pp. 1211, 10.1038/ng.3909
  • Ma, (2018), Nature, 555, pp. 371, 10.1038/nature25795
  • Mainardi, (2014), Proc. Natl. Acad. Sci. U S A., 111, pp. 255, 10.1073/pnas.1320383110
  • Martin-Lorenzo, (2018), Cancer Res., 78, pp. 2669, 10.1158/0008-5472.can-17-3262
  • Martin-Lorenzo, (2015), Cancer Discovery, 5, pp. 1328, 10.1158/2159-8290.cd-15-0892
  • McLaren, (2010), Bioinformatics, 26, pp. 2069, 10.1093/bioinformatics/btq330
  • Mori, (2002), Proc. Natl. Acad. Sci. U S A., 99, pp. 8242, 10.1073/pnas.112218799
  • Mullighan, (2014), Hematol. Am. Soc. Hematol. Educ. Program, 2014, pp. 174, 10.1182/asheducation-2014.1.174
  • Papaemmanuil, (2014), Nat. Genet., 46, pp. 116, 10.1038/ng.2874
  • Pui, (2019), Nat. Rev. Clin. Oncol., 16, pp. 227, 10.1038/s41571-018-0136-6
  • Rodriguez-Hernandez, Cancer Res., 77, pp. 4365, 10.1158/0008-5472.can-17-0701
  • Rodriguez-Hernandez, Oncotarget, 8, pp. 102674, 10.18632/oncotarget.21281
  • Rodriguez-Hernandez, (2019), Nat. Commun., 10, 10.1038/s41467-019-13570-y
  • Schafer, (2018), Blood, 131, pp. 821, 10.1182/blood-2017-09-808402
  • Schindler, (2009), Cell Stem Cell, 5, pp. 43, 10.1016/j.stem.2009.04.019
  • Swaminathan, (2015), Nat. Immunol., 16, pp. 766, 10.1038/ni.3160
  • Urbanek, (1994), Cell, 79, pp. 901, 10.1016/0092-8674(94)90079-5
  • Vicente-Duenas, (2018), Trends Cancer, 4, pp. 408, 10.1016/j.trecan.2018.04.007
  • Vicente-Duenas, (2020), Blood, 136, pp. 2003, 10.1182/blood.2019004381