Substrate adhesion evolves non-monotonically with processing time in millimeter-scale aligned carbon nanotube arrays

  1. Guzman de Villoria, Roberto 1234
  2. Acauan, Luiz H. 1234
  3. Steiner, Stephen A. 1234
  4. Lidston, Dale L. 1234
  5. Wardle, Brian L. 12345
  6. Peterson, Sophie C. 12345
  7. Stein, Itai Y. 1234
  8. Kaiser, Ashley L. 2346
  9. Vanderhout, Amy R. 1234
  1. 1 Department of Aeronautics and Astronautics
  2. 2 Massachusetts Institute of Technology
    info

    Massachusetts Institute of Technology

    Cambridge, Estados Unidos

    ROR https://ror.org/042nb2s44

  3. 3 Cambridge
  4. 4 USA
  5. 5 Department of Mechanical Engineering
  6. 6 Department of Materials Science and Engineering
Journal:
Nanoscale

ISSN: 2040-3364 2040-3372

Year of publication: 2021

Volume: 13

Issue: 1

Pages: 261-271

Type: Article

DOI: 10.1039/D0NR05469K GOOGLE SCHOLAR

More publications in: Nanoscale

Abstract

Aligned carbon nanotube (CNT) array adhesion strength evolves with CNT process time, decreasing and then increasing during growth and annealing, as captured by models relating CNT diameter, array effective modulus, and CNT–substrate work of adhesion.

Bibliographic References

  • Rao, (2018), ACS Nano, 12, pp. 11756, 10.1021/acsnano.8b06511
  • Wu, (2017), Nanoscale, 9, pp. 7342, 10.1039/C7NR01604B
  • Kenry, (2017), Prog. Polym. Sci., 70, pp. 1, 10.1016/j.progpolymsci.2017.03.002
  • Sun, (2017), Nat. Rev. Mater., 2, pp. 17023, 10.1038/natrevmats.2017.23
  • Shulaker, (2017), Nature, 547, pp. 74, 10.1038/nature22994
  • Zhong, (2018), Nat. Electron., 1, pp. 40, 10.1038/s41928-017-0003-y
  • De Volder, (2013), Science, 339, pp. 535, 10.1126/science.1222453
  • Di, (2014), Small, 10, pp. 4606, 10.1002/smll.201401465
  • Bai, (2018), Nat. Nanotechnol., 13, pp. 589, 10.1038/s41565-018-0141-z
  • Zhang, (2012), Nano Lett., 12, pp. 4848, 10.1021/nl3023274
  • Kim, (2017), J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 35, pp. 011802
  • Tawfick, (2016), MRS Bull., 41, pp. 108, 10.1557/mrs.2016.4
  • Lahiri, (2011), ACS Nano, 5, pp. 780, 10.1021/nn102900z
  • Ferrari, (2015), Nanoscale, 7, pp. 4598, 10.1039/C4NR01600A
  • Zhang, (2006), J. Mater. Res., 21, pp. 2922, 10.1557/jmr.2006.0357
  • Chen, (2015), ACS Appl. Mater. Interfaces, 7, pp. 3626, 10.1021/am507822b
  • Hu, (2010), J. Phys. Chem. C, 114, pp. 3850, 10.1021/jp9112365
  • Pint, (2010), ACS Nano, 4, pp. 1131, 10.1021/nn9013356
  • Ping, (2018), Carbon, 133, pp. 275, 10.1016/j.carbon.2018.03.032
  • Hwang, (2020), ACS Nano, 14, pp. 118, 10.1021/acsnano.9b02141
  • Ni, (2016), Adv. Energy Mater., 6, pp. 1600278, 10.1002/aenm.201600278
  • Mai, (2014), Chem. Rev., 114, pp. 11828, 10.1021/cr500177a
  • Zhang, (2019), Carbon, 142, pp. 445, 10.1016/j.carbon.2018.10.077
  • Avraham, (2018), Carbon, 130, pp. 273, 10.1016/j.carbon.2018.01.002
  • Meshot, (2010), Nanoscale, 2, pp. 896, 10.1039/b9nr00343f
  • Guzman de Villoria, (2011), ACS Nano, 5, pp. 4850, 10.1021/nn2008645
  • Kaiser, (2018), Phys. Chem. Chem. Phys., 20, pp. 3876, 10.1039/C7CP06869G
  • Brown, (2019), ACS Appl. Mater. Interfaces, 38, pp. 35221, 10.1021/acsami.9b09979
  • Pour Shahid Saeed Abadi, (2013), Appl. Phys. Lett., 102, pp. 223103, 10.1063/1.4802080
  • Gao, (2012), Carbon, 50, pp. 3789, 10.1016/j.carbon.2012.04.004
  • Hart, (2006), Nano Lett., 6, pp. 1254, 10.1021/nl0524041
  • Pour Shahid Saeed Abadi, (2012), Nanoscale, 4, pp. 3373, 10.1039/c2nr30474k
  • Choi, (2014), ACS Appl. Mater. Interfaces, 6, pp. 6598, 10.1021/am500252s
  • Chen, (2003), Appl. Phys. Lett., 83, pp. 3570, 10.1063/1.1623013
  • Bhushan, (2008), Phys. Rev. B: Condens. Matter Mater. Phys., 77, pp. 165428, 10.1103/PhysRevB.77.165428
  • Bhushan, (2008), Phys. Rev. B: Condens. Matter Mater. Phys., 78, pp. 045429, 10.1103/PhysRevB.78.045429
  • Ke, (2010), Small, 6, pp. 438, 10.1002/smll.200901807
  • Cao, (2005), Nat. Mater., 4, pp. 540, 10.1038/nmat1415
  • Stadermann, (2009), Nano Lett., 9, pp. 738, 10.1021/nl803277g
  • Bedewy, (2009), J. Phys. Chem. C, 113, pp. 20576, 10.1021/jp904152v
  • Cui, (2009), Carbon, 47, pp. 3441, 10.1016/j.carbon.2009.08.011
  • Stein, (2015), Nanoscale, 7, pp. 19426, 10.1039/C5NR06436H
  • Cranford, (2010), J. Mech. Phys. Solids, 58, pp. 409, 10.1016/j.jmps.2009.11.002
  • Maschmann, (2015), Carbon, 86, pp. 26, 10.1016/j.carbon.2015.01.013
  • Won, (2013), Proc. Natl. Acad. Sci. U. S. A., 110, pp. 20426, 10.1073/pnas.1312253110
  • Cebeci, (2014), Appl. Phys. Lett., 104, pp. 023117, 10.1063/1.4862273
  • Popov, (2017), Friction, 5, pp. 308, 10.1007/s40544-017-0177-3
  • V. Popov , M.Heß and E.Willert , Handbook of Contact Mechanics: Exact Solutions of Axisymmetric Contact Problems , Springer Berlin Heidelberg , 2019
  • Tabor, (1977), J. Colloid Interface Sci., 58, pp. 2, 10.1016/0021-9797(77)90366-6
  • Kendall, (1971), J. Phys. D: Appl. Phys., 4, pp. 1186, 10.1088/0022-3727/4/8/320
  • Ruoff, (1993), Nature, 364, pp. 514, 10.1038/364514a0
  • Spolenak, (2005), Proc. R. Soc. A, 461, pp. 305, 10.1098/rspa.2004.1326
  • Gao, (2005), Mech. Mater., 37, pp. 275, 10.1016/j.mechmat.2004.03.008
  • Roenbeck, (2014), ACS Nano, 8, pp. 124, 10.1021/nn402485n
  • Wirth, (2008), Diamond Relat. Mater., 17, pp. 1518, 10.1016/j.diamond.2007.11.019
  • Roenbeck, (2015), Nano Lett., 15, pp. 4504, 10.1021/acs.nanolett.5b01011
  • Chen, (2019), Compos. Struct., 208, pp. 150, 10.1016/j.compstruct.2018.10.021
  • Maschmann, (2011), ACS Appl. Mater. Interfaces, 3, pp. 648, 10.1021/am101262g
  • Qu, (2008), Science, 322, pp. 238, 10.1126/science.1159503
  • B. Aksak , M. P.Murphy and M.Sitti , IEEE International Conference on Robotics and Automation , 2008 , pp. 3058–3063
  • Sameoto, (2009), J. Micromech. Microeng., 19, pp. 115002, 10.1088/0960-1317/19/11/115002
  • Tian, (2006), Proc. Natl. Acad. Sci. U. S. A., 103, pp. 19320, 10.1073/pnas.0608841103
  • Zhao, (2003), J. Adhes. Sci. Technol., 17, pp. 519, 10.1163/15685610360554393
  • Tinnemann, (2019), Adv. Funct. Mater., 29, pp. 1807713, 10.1002/adfm.201807713
  • Bedewy, (2012), Carbon, 50, pp. 5106, 10.1016/j.carbon.2012.06.051
  • Zhao, (2006), J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom., 24, pp. 331, 10.1116/1.2163891
  • Li, (2008), Nanotechnology, 19, pp. 455609, 10.1088/0957-4484/19/45/455609
  • Yasuda, (2009), Nano Lett., 9, pp. 769, 10.1021/nl803389v
  • Santangelo, (2013), J. Phys. Chem. C, 117, pp. 4815, 10.1021/jp310014w
  • Thiagarajan, (2014), Compos. Sci. Technol., 90, pp. 82, 10.1016/j.compscitech.2013.10.008
  • Puretzky, (2005), Appl. Phys. A, 81, pp. 223, 10.1007/s00339-005-3256-7
  • Singh, (2003), Carbon, 41, pp. 359, 10.1016/S0008-6223(02)00314-7
  • Lee, (2015), Appl. Phys. Lett., 106, pp. 053110, 10.1063/1.4907608
  • Stein, (2016), Phys. Chem. Chem. Phys., 18, pp. 694, 10.1039/C5CP06381G
  • Stein, (2013), Phys. Chem. Chem. Phys., 15, pp. 4033, 10.1039/c3cp43762k
  • Futaba, (2006), J. Phys. Chem. B, 110, pp. 8035, 10.1021/jp060080e
  • Zhu, (2005), Nano Lett., 5, pp. 2641, 10.1021/nl051906b
  • Han, (2008), ACS Nano, 2, pp. 53, 10.1021/nn700200c
  • Tang, (2014), ACS Nano, 8, pp. 292, 10.1021/nn403927y
  • Pint, (2008), ACS Nano, 2, pp. 1871, 10.1021/nn8003718
  • Mattevi, (2008), J. Phys. Chem. C, 112, pp. 12207, 10.1021/jp802474g
  • Bedewy, (2011), ACS Nano, 5, pp. 8974, 10.1021/nn203144f
  • Liang, (2017), Int. J. Solids Struct., 122–123, pp. 196, 10.1016/j.ijsolstr.2017.06.025
  • Su, (2017), Materials, 10, pp. 206, 10.3390/ma10020206
  • Salvetat, (1999), Appl. Phys. A, 69, pp. 255, 10.1007/s003390050999
  • Lim, (2010), ACS Nano, 4, pp. 1067, 10.1021/nn9012109
  • Kaiser, (2019), Nano Futures, 3, pp. 011003, 10.1088/2399-1984/aafe16
  • Roh, (2014), Polymer, 55, pp. 1527, 10.1016/j.polymer.2014.02.015
  • Zebda, (2008), Appl. Surf. Sci., 254, pp. 4980, 10.1016/j.apsusc.2008.01.147
  • Yuan, (2018), J. Phys. D: Appl. Phys., 51, pp. 283002, 10.1088/1361-6463/aac9f4
  • Li, (2019), Langmuir, 35, pp. 4527, 10.1021/acs.langmuir.9b00192
  • Kocherlakota, (2015), J. Chem. Phys., 143, pp. 241105, 10.1063/1.4939248
  • Cartwright, (2014), Carbon, 75, pp. 327, 10.1016/j.carbon.2014.04.011
  • Xia, (2019), Phys. Chem. Chem. Phys., 21, pp. 1217, 10.1039/C8CP06608F
  • Zacharia, (2004), Phys. Rev. B: Condens. Matter Mater. Phys., 69, pp. 155406, 10.1103/PhysRevB.69.155406
  • Dresselhaus, (2010), Nano Lett., 10, pp. 751, 10.1021/nl904286r
  • Ferrari, (2000), Phys. Rev. B: Condens. Matter Mater. Phys., 61, pp. 14095, 10.1103/PhysRevB.61.14095
  • Cancado, (2011), Nano Lett., 11, pp. 3190, 10.1021/nl201432g
  • Yuan, (2017), J. Phys. D: Appl. Phys., 50, pp. 395303, 10.1088/1361-6463/aa81b0
  • De Volder, (2010), Adv. Mater., 22, pp. 4384, 10.1002/adma.201001893
  • Bedewy, (2017), J. Mater. Res., 32, pp. 153, 10.1557/jmr.2016.498
  • Balakrishnan, (2016), ACS Nano, 10, pp. 11496, 10.1021/acsnano.6b07251
  • Jeong, (2016), Nanoscale, 8, pp. 2055, 10.1039/C5NR05547D
  • He, (2017), Carbon, 113, pp. 231, 10.1016/j.carbon.2016.11.057
  • Zhang, (2017), Carbon, 115, pp. 589, 10.1016/j.carbon.2017.01.042
  • Huang, (2010), Carbon, 48, pp. 1441, 10.1016/j.carbon.2009.12.038
  • Tromans, (2002), Miner. Eng., 15, pp. 1027, 10.1016/S0892-6875(02)00213-3
  • Schron, (2015), Phys. Rev. B: Condens. Matter Mater. Phys., 92, pp. 165112, 10.1103/PhysRevB.92.165112
  • Zhao, (2012), J. Catal., 294, pp. 47, 10.1016/j.jcat.2012.07.003
  • Hugosson, (2004), Surf. Sci., 557, pp. 243, 10.1016/j.susc.2004.03.050
  • Savini, (2011), Carbon, 49, pp. 62, 10.1016/j.carbon.2010.08.042
  • Guhados, (2007), J. Appl. Phys., 101, pp. 033514, 10.1063/1.2433125
  • Dee, (2019), Chem. Mater., 31, pp. 407, 10.1021/acs.chemmater.8b03627
  • Liew, (2006), Acta Mater., 54, pp. 225, 10.1016/j.actamat.2005.09.002
  • Liu, (2017), Mater. Chem. Phys., 196, pp. 160, 10.1016/j.matchemphys.2017.04.052
  • Stein, (2017), J. Mater. Sci., 52, pp. 13799, 10.1007/s10853-017-1468-9
  • Stein, (2014), ACS Nano, 8, pp. 4591, 10.1021/nn5002408