Procesamiento de magnitudes numéricas y ejecución matemática

  1. Josetxu Orrantia 1
  2. Sara San Romualdo 1
  3. Sánchez, R. 1
  4. Laura Mantilla 1
  5. David Muñez 2
  6. Lieven Verschaffel 3
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 National Institute of Education. Center for Research in Child Development (Singapur)
  3. 3 KU Leuven
    info

    KU Leuven

    Lovaina, Bélgica

    ROR https://ror.org/05f950310

Journal:
Revista de educación

ISSN: 0034-8082

Year of publication: 2018

Issue: 381

Pages: 133-146

Type: Article

DOI: 10.4438/1988-592X-RE-2017-381-383 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de educación

Abstract

Recent research suggests that individual differences in mathematics are related to the ability to basic number processing skills, such as the ability to process numerical magnitudes. A key question in this emerging field of research is which skills related to the magnitude processing predict the mathematical competence: either no symbolic magnitude processing, or the access to those magnitudes from the symbolic numbers. The present study extended this research by investigating the role of the size of the quantities (small vs. large). Fifty-two children were assessed on nonsymbolic and symbolic magnitude processing measures at the start of formal schooling and mathematics achievement was evaluated two years later. Hierarchical regression analyzes showed that large symbolic magnitude processing was a stronger predictor of future mathematical achievement compared to the other magnitude processing measures. These results were interpreted in terms of their educational implications, specifically in the use of screening tools for identifying children with difficulties in mathematics.

Funding information

Este trabajo fue realizado como parte del proyecto financiado PSI2015-66802-P del Ministerio de Economía y Competitividad

Funders

Bibliographic References

  • Ashkenazi, S., Mark-Zigdon, N., y Henik, A. (2009). Numerical distance,  effect in developmental discalculia. Cognitive Development, 24, 387400.
  • Ato, M., & López, J., & Benavente, A. (2013). Un sistema de clasificación  de los diseños de investigación en psicología. Anales de Psicología, 29, 1038-1059.
  • Barth, H.,  Starr, A.,  y  Sullivan,  J.  (2009). Children’s mappings of large number words to numerosities. Cognitive Development, 24, 248-264.
  • Bertelletti, I., Lucangeli, D., Piazza, M., Dehaene, S., y Zorzi, M. (2010).  Numerical estimation in preschoolers. Developmental Psychology, 46, 545–551.
  • Brankaer, C., Ghesquière, P., y De Smedt, B. (2017). Symbolic magnitude  processing in elementary school children: A group administered paper-and-pencil measure (SYMP Test). Behavior Research Methods, 49, 1361-1373.
  • Brissiaud, R.,  y  Sander,  E.  (2010). Arithmetic word problem  solving:  a  Situation Strategy First framework. Developmental Science, 13, 92-107.
  • Chen, Q., y Li,  J.  (2014). Association between  individual differences  in  nonsymbolic number acuity and math performance: A meta-analysis.  Acta Psychologica, 148, 163–172.
  • Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York: Oxford University Press.
  • De  Smedt,  B.,  Noël,  M.  P.,  Gilmore,  C.,  y  Ansari,  D.  (2013).  How  do  symbolic and nonsymbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55.
  • Fazio,  L.  K.,  Bailey,  D.  H.,  Thompson,  C.  A.,  y  Siegler,  R.  S.  (2014).  Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72.
  • Feigenson, L., Dehaene, S., y Spelke, E. (2004). Core systems of number.  Trends in Cognitive Sciences, 8, 307–314.
  • Halberda, J., y Feigenson, L. (2008). Developmental change in the acuity of the ‘number sense’: The approximate number system in 3-, 4-, 5-,  and 6-year-olds and adults. Developmental Psychology, 44, 1457–1465.
  • Lefevre,  J-O.,  Wells,  E.,  y  Sowinski,  C.  (2016).  Individual  differences  in basic arithmetical processes in children and adults. En R. Cohen KAdosh y A. Dowker (Eds.), The Oxford handbook of numerical cognition ((pp. 895-914). Oxford: Oxford University Press.
  • Leibovich,  T.,  y  Ansari,  D.  (2016).  The  symbol-grounding  problem  in  numerical cognition: A review of theory, evidence, and outstanding questions. Canadian Journal of Experimental Psychology, 70, 12-23.
  • Libertus, M. E., Feigenson, L., y Halberda, J. (2011). Preschool acuity of  the approximate number system correlates with school math ability. Developmental Science, 14, 1292-1300.
  • Lipton,  J.  S.,  y  Spelke,  E.  S.  (2005).  Preschool  children’s  mapping  of  number words to nonsymbolic numerosities. Child Development, 76, 978-988.
  • Linsen,  S.,  Verschaffel,  L.,  Reynvoet,  B.,  y  De  Smedt,  B.  (2014).  The  association between Children’s numerical magnitude processing and mental multi-digit subtraction. Acta Psychologica, 145, 75-83.
  • Lyons,  I. M.,  y Ansari, D.  (2015).  Foundations of Children’s Numerical  and  Mathematical  Skills:  The  Roles  of  Symbolic  and  Nonsymbolic  Representations  of  Numerical  Magnitude.  En  J.  B.  Benson  (Ed.),  Advances in Child Development and Behavior, Vol. 48, (pp. 93-116).  Burlington: Academic Press.
  • Lyons,  I. M., Price, G. R., Vaessen, A., Blomert, L., y Ansari, D.  (2014).  Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17, 714-726.
  • Melby-Lervåg, M., Lyster, S. H., y Hulme, C. (2012) Phonological skills and  their role in learning to read: A Meta-Analytic Review. Psychological Bulletin, 138, 322–352.
  • Mundy, E., y Gilmore, C. K. (2009). Children’s mapping between symbolic  and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103, 490–502.
  • Nosworthy, N., Bugden, S., Archibald, Evans, B. y Ansari, D. (2013). A twominute paper-and-pencil test of symbolic and nonsymbolic numerical  magnitude processing explains variability in primary school children’s arithmetic competence. PLoS ONE, 8(7), e67918.
  • Orrantia,  J.,  San  Romualdo,  S.,  Matilla,  L.,  Sánchez,  R.,  Múñez,  D.  y  Verschaffel, L. (2017). Marcadores nucleares de la competencia aritmética  en preescolares. Psychology, Society, & Education, 9, 121-124.
  • Reynvoet,  B.,  y  Sasanguie, D.  (2016). The symbol grounding problem revisited:  a  thorough  evaluation  of  the ANS mapping  account  and  the  proposal  of  an  alternative  account  based  on  symbol-symbol  associations. Frontiers in Psychology, 7:1581.
  • Riley, N. S., Greeno, J., y Heller, J. I. (1983). Development of children’s  problem  solving  ability  in  arithmetic.  In  H.  P.  Ginsburg  (Ed.),  The development of mathematical thinking  (pp.  153-196).  New  York:  Academic Press.
  • Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., y Reynvoet, B. (2013).  Approximate number sense, symbolic number processing, or numberspace mappings: What underlies mathematics achievement?  Journal of Experimental Child Psychology, 114, 418-431.
  • Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J.,  y De Smedt, B. (en prensa). Associations of non-symbolic and symbolic  numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science. doi:10.1111/desc.12372.
  • Siegler, R. S. (2016). Magnitude knowledge: the common core of numerical  development. Developmental Science, 19, 341-361.
  • Vanbinst,  K.,  Ghesquière,  P.,  y  De  Smedt,  B.  (2015).  Does  numerical  processing  uniquely  predict  first  graders’  future  development  of  single-digit arithmetic? Learning and Individual Differences, 37, 153-160.
  • Xenidou-Dervou,  I.,  Molenaar,  D.,  Ansari,  D.,  van  der  Schoot,  M.,  y  van  Lieshout,  E.  C.  D.  M.  (en  prensa).  Nonsymbolic  and  symbolic  magnitude comparison skills as longitudinal predictors of mathematical achievement. Learning and Instruction, 50, 1-13. 
  • Yuste, C., Franco, J., y Palacios, J. M. (2013). Test ICCE de Inteligencia. Madrid: ICCE Publicaciones.
  • Yuste, C., Yuste, D., Martínez, R. y Galve, J. L. (2012). BADyG. Batería de  Aptitudes Generales y Diferenciales. Madrid: CEPE.