Una reconsideración pluralista del concepto de herencia

  1. Martín-Villuendas, Mariano
Revista:
Contrastes: revista internacional de filosofía

ISSN: 1136-4076 2659-921X

Año de publicación: 2021

Volumen: 26

Número: 3

Páginas: 25-47

Tipo: Artículo

DOI: 10.24310/CONTRASTESCONTRASTES.V26I3.10251 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Contrastes: revista internacional de filosofía

Resumen

A raíz de los recientes descubrimientos en disciplinas emergentes como la epigenética o la eco-devo, el concepto genocentrista de herencia propio de la Síntesis Moderna ha sido sometido a un intenso análisis y revisión. El presente trabajo tiene por objetivo analizar las inconsistencias conceptuales y prácticas derivadas del concepto clásico de herencia, así como proponer un concepto pluralista e inclusivo. Para ello, se tomará como fenómeno de referencia la herencia epigenética. De estos análisis se concluirá que solo abrazando dicho concepto es posible superar las limitaciones prácticas y conceptuales del modelo de herencia propio de la Síntesis Moderna.

Referencias bibliográficas

  • ANWAY, M., CUPP, A., UZUMCU, M. y SKINNER, M. 2005: «Epigenetic transgenerational actions of endocrine disruptors and male fertility». Science 308, pp. 1466–1469. Doi: https://doi.org/10.1126/science.1108190.
  • BADYAEV, A. 2008: «Maternal effects as generators of evolutionary change: A reassessment». Ann. N.Y. Acad. Sci. 1133, pp. 151-161. Doi: https://doi.org/10.1196/annals.1438.009.
  • BADYAEV, A. y ULLER, T. 2009: «Parental effects in ecology and evolution: mechanism, processes and implications». Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364 (1520), pp. 1169-1177. Doi: https://dx.doi.org/10.1098%2Frstb.2008.0302.
  • BANTA, J. y RICHARDS, C. 2018: «Quantitative epigenetics and evolution». Heredity 121 (3), pp. 210-224. Doi: https://doi.org/10.1038/s41437-018-0114-x.
  • BIRD, A. 2002: «DNA methylation patterns and epigenetic memory». Genes. Dev. 16, pp. 6-21. Doi: https://doi.org/10.1101/gad.947102.
  • BONDURIANSKY, R. y DAY, T. 2009: «Nongenetic inheritance and its evolutionary implications». Anu. Rev. Ecol. Evol. Syst. 40, pp. 103-125. Doi: https://doi.org/10.1111/jeb.12028.
  • BONDURIANSKY, R. y DAY, T. 2018: Extended Heredity. A New Understanding of Inheritance and Evolution. Princeton: Princeton University Press.
  • BOSKOVIC, A. y RANDO, O. 2018: «Transgenerational epigenetic inheritance». Annu. Rev. Genet. 52, pp. 21-41. Doi: https://doi.org/10.1146/annurev-genet-120417-031404.
  • BURGGREN, W. 2016: «Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives». Biology 5 (24), pp. 1-22. Doi: https://dx.doi.org/10.3390%2Fbiology5020024.
  • CROPLEY, J., SUTER, C., BECKMAN, K. y MARTIN, D. 2006: «Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation». PNAS 103 (46), pp. 17308-17312. Doi: https://doi.org/10.1073/pnas.0607090103.
  • CUBAS, P., VINCENT, C. y COEN, E. 1999: «An epigenetic mutation responsible for natural variation in floral symmetry». Nature 401, pp. 157–161. Doi: https://doi.org/10.1038/43657.
  • DANCHIN, É., CHARMENTIER, A., CHAMPAGNE, F., MESOUDI, A., PUJOL, B. y BLANCHET, S. 2011: «Beyond DNA: integrating inclusive inheritance into an extended theory of evolution». Nature 12, pp. 475-486.
  • DANCHIN, É., POCHEVILLE, A., REY, O., PUJOL, B. y BLANCHET, S. 2019: «Epigenetically facilitated mutational assimilations: epigenetics as a hub within the inclusive evolutionary synthesis». Biol. Rev 94, pp. 259-282. Doi: https://doi.org/10.1111/brv.12453.
  • DAWKINS, R. 1999: El fenotipo extendido. El largo alcance del gen. Madrid: Capitán Swing.
  • DAXINGER, L. y WHITELAW, E. 2012: «Understanding transgenerational epigenetic inheritance via the gametes in mammals». Nat. Rev. Genet. 13 (3), pp. 153-162.
  • DOBZHANSKY, T. 1970: Genetics of the Evolutionary Process. New York: Columbia University Press.
  • EHRENREICH, I. y PFENNIG, D. 2016: «Genetic assimilation: a review of its potential proximate causes and evolutionary consequences». Ann. Bot. 117 (5), pp. 769-779.
  • FLATSCHER, R., FRAJMAN, B., SCHÖNSWETTER, P. y PAUN, O. 2012: «Environmental heterogeneity and phenotypic divergence: can heritable epigenetic variation aid speciation?» Genetics Research International. Doi: https://doi.org/10.1155/2012/698421.
  • FOUST, C., SCHREY, A. y RICHARDS, C. 2015: «Population Epigenetics». En O. PONTES y H. JIN. (eds), Nuclear functions in Plant Transcription, Signaling and Development. New York: Springer, pp. 165-179.
  • FRAGA, M. et al., 2005: «Epigenetic differences arise during the lifetime of monozygotic twins». PNAS 102 (30), pp. 10604-10609. Doi: https://doi.org/10.1073/pnas.0500398102.
  • FUTUYMA, D. y KIRKPATRICK, M. 2017: Evolution. Sunderland: Sinauer.
  • GILBERT, S. y EPEL, D. 2015: Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution. Sunderland: Sinauer.
  • GUERRERO-BOSAGNA, C. 2012: «Finalism in Darwinian and Lamarckian Evolution: lessons from epigenetics and developmental biology». Evol. Biol 39, pp. 283-300.
  • GUERRERO-BOSAGNA, C., SETTLES, M., LUCKER, B. y SKINNER, M. 2010: «Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome». PLoS ONE 5 (9), e13100. Doi: https://doi.org/10.1371/journal.pone.0013100.
  • HEARD, E. y MARTIENSSEN, R. 2014: «Transgenerational epigenetic inheritance: myths and mechanisms». Cell 157, pp. 95–109. Doi: https://doi.org/10.1016/j.cell.2014.02.045.
  • HELENTERÄ, H. y ULLER, T. 2010: «The Price Equation and Extended Inheritance». Philos. Theor. Biol. 2, pp. 1-17. Doi: http://dx.doi.org/10.3998/ptb.6959004.0002.001.
  • HERRERA, C. y BAZAGA, P. 2010: «Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis». New Phytol. 187, pp. 867–76. Doi: https://doi.org/10.1111/j.1469-8137.2010.03298.x.
  • HERRON, J. y FREEMAN, S. 2015: Evolutionary Analysis. England: Pearson.
  • HU, J. y BARRETT, R. 2017: «Epigenetics in natural animal populations». J. Evol. Biol. 30, pp. 1612-1632. Doi: https://doi.org/10.1111/jeb.13130.
  • HUNEMAN, P. y WALSH, D. (eds.) 2017: Challenging the Modern Synthesis. Adaptation, Development and Inheritance. Oxford: Oxford University Press.
  • HUXLEY, J. 1942/2010: Evolution: The Modern Synthesis. Cambridge: MIT Press.
  • JABLONKA, E. 2017: «The evolutionary implications of epigenetic inheritance». Interface focus 7, 20160135. Doi: https://doi.org/10.1098/rsfs.2016.0135.
  • JABLONKA, E. y LAMB, M. 2005: Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. Cambridge: MIT Press.
  • JABLONKA, E. y RAZ, G. 2009: «Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution». Q. Rev. Biol. 84 (2), pp. 131-176. Doi: https://doi.org/10.1086/598822.
  • JIRTLE, R. y SKINNER, M. 2007: «Environmental epigenomics and disease susceptibility». Nat. Rev. Genet 8 (4), pp. 253-262. Doi: https://doi.org/10.1038/nrg2045.
  • KLIRONOMOS, F., BERG, J. y COLLINS, S. 2013: «How epigenetic mutations can affect genetic evolution: model and mechanism». BioEssays 35, pp. 571–578. Doi: https://doi.org/10.1002/bies.201200169.
  • LEUNG, C., BRETON, S. y ANGERS, B. 2016: «Facing environmental predictability with different sources of epigenetic variation». Ecology and Evolution 6 (15), pp. 5234-5245. Doi: https://doi.org/10.1002/ece3.2283.
  • LEWONTIN, R. 1998/2000: Genes, Organismo y Ambiente. Las relaciones de causa y efecto en biología. Barcelona: Gedisa.
  • LIND, M. y SPAGOPOULOU, F. 2018: «Evolutionary consequences of epigenetic inheritance». Heredity 121, pp. 205-209.
  • LYKO, F., FORET, S., KUCHARSKI, R,. et al., 2011: «The honey bee epigenomes: differential methylation of brain DNA in queens and workers». PLoS Biol 8 (11). Doi: https://doi.org/10.1371/journal.pbio.1000506.
  • MAMELI, M. 2004: «Nongenetic Selection and Nongenetic Inheritance». Brit. J. Sci. 55, pp. 35-71. Doi: https://doi.org/10.1093/bjps/55.1.35.
  • MAMELI, M. 2005: «The inheritance of features». Biology and Philosophy 20, pp. 365-399.
  • MAYR, E. 2001: What evolution is. Great Britain: Phoenix paperback.
  • MENDIZABAL, I., KELLER, T., ZENG, J. y SOOJIN, V. 2014: «Epigenetics and Evolution». Integrative and Comparative Biology 54 (1), pp. 31-42. Doi: https://dx.doi.org/10.1093%2Ficb%2Ficu040.
  • MERLIN, F. 2017: «Limited Extended Inheritance». En P. HUNEMAN y D. WALSH. (eds.), Challenging the Modern Synthesis. Adaptation, Development and Inheritance. Oxford: Oxford University Press, pp. 263-280.
  • MITCHELL, S. 2003: Biological Complexity and Integrative Pluralism. Cambridge: Cambridge University Press.
  • MORGAN, H.D., SUTHERLAND, H. G., MARTIN, D. I. y WHITELAW, E. 1999: «Epigenetic inheritance at the agouti locus in the mouse». Nat. Genet. 23, pp. 314–318. Doi: https://doi.org/10.1038/15490.
  • MORRIS, D. y LUNDBERG, P. (2011): Pillars of Evolution. Fundamental Principles of the Eco-evolutionary Process. Oxford: Oxford University Press.
  • ODLING-SMEE, J., LALAND, K. y FELDMAN, M. (eds.) 2003: Niche Construction: The Neglected Process in Evolution. Princeton: Princeton University Press.
  • OYAMA, S., GRIFFITHS, P. y GRAY, R. (eds.) 2001: Cycles of Contingency. Developmental Systems and Evolution. Cambridge: MIT Press.
  • PAL, C. y MIKLÓS, I. 1999: «Epigenetic inheritance, genetic assimilation and speciation». J. Theor. Biol. 200, pp. 19-37. Doi: https://doi.org/10.1006/jtbi.1999.0974.
  • PEREZ, M. y LEHNER, B. 2019: «Intergenerational and transgenerational epigenetic inheritance in animals». Nat. Cell. Biol. 21, pp. 143–151.
  • PFENNIG, D., WUNDT, M., SNELL-ROOD, E., CRUICKSHANK, T., SCHLICHTING, C. y MOCZEK, A. 2010: «Phenotypic plasticity’s impacts on diversification and speciation». Trends. Ecol. Evol. 25 (8), pp. 459-467. Doi: https://doi.org/10.1016/j.tree.2010.05.006.
  • PIGLIUCCI, M. 2007: «Do we need an extended evolutionary synthesis?». Evolution 61 (12), pp. 2743-2749. Doi: https://doi.org/10.1111/j.1558-5646.2007.00246.x.
  • PIGLIUCCI, M. y MÜLLER, G. (eds.) 2010: Evolution—The Extended Synthesis. Cambridge: MIT Press
  • POTOCHNIK, A. 2017: Idealization and the Aims of Science. Chicago: The University of Chicago Press.
  • RICHARDS, C., BOSSDORF, O. y PIGLIUCCI, M. 2010: «What role does heritable epigenetic variation play in phenotypic evolution?». BioScience 60 (3), pp. 232-327. Doi: https://doi.org/10.1525/bio.2010.60.3.9.
  • RICHARDS, E. 2006: «Inherited epigenetic variation – Revisiting soft inheritance». Nature reviews 7, pp. 395-401.
  • RIDLEY, M. 2004: Evolution. Oxford: Blackwell Publishing.
  • ROSENBERG, A. 2006: «Is Epigenetic Inheritance a Counterexample to the Central Dogma?». Hist. Phil. Sci. 28, pp. 549-566.
  • SCHREY, A., RICHARDS, C., MELLER, V., SOLLARS, V. y RUDEN, D. 2012: «The role of epigenetics in evolution: The extended synthesis». Genet. Res. Int. 2012, pp. 1-3. Doi: https://dx.doi.org/10.1155%2F2012%2F286164.
  • SCIAMANNA, I., SERAFINO, A., SHAPIRO, J. y SPADAFORA, C. 2019: «The active rol of spermatozoa in transgenerational inheritance». Proc. R. Soc. B 2086, pp. 20191263. Doi: https://doi.org/10.1098/rspb.2019.1263.
  • SHEA, N., PEN, I. y ULLER, T. 2011: «Three epigenetic information channels and their different roles in evolution». J. Evol. Biol. 24, pp. 1178-1187. Doi: https://doi.org/10.1111/j.1420-9101.2011.02235.x.
  • STOTZ, K. y GRIFFITHS, P. 2018: «Genetic, epigenetic and exogenetic information». En D. JOYCE. (ed.), Routledge Handbook of Evolution and Philosophy. London: Routledge.
  • SULTAN, S. 2015: Organism & Environment. Ecological Development, Niche Construction and Adaptation. Oxford: Oxford University Press.
  • ULLER, T. y HELENTERÄ, H. 2017: «Heredity and Evolutionary Theory». En P. HUNEMAN y D. WALSH. (eds.), Challenging the Modern Synthesis. Adaptation, Development and Inheritance. Oxford: Oxford University Press, pp. 280-317.
  • VOGT, G. 2017: «Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals». Environmental epigenetics 3 (1), pp. 1-17. Doi: https://doi.org/10.1093/eep/dvx002.
  • WADDINGTON, C. 1953: «Genetic assimilation of an acquired character». Evolution 7, pp. 118–126. Doi: https://doi.org/10.1111/j.1558-5646.1953.tb00070.x.
  • WAGNER, G. y ALTENBERG, L. 1996: «Complex adaptations and the evolution of evolvability». Evolution 50, pp. 967-976.
  • WANG, Y., LIU, H. y SUN, Z. 2017: «Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans». Biological Reviews 92, pp. 2084–2111. Doi: https://doi.org/10.1111/brv.12322.
  • WEISBERG, M. 2013: Simulation and Similarity. Using Models to Understand the World. Oxford: Oxford University Press.
  • WEST-EBERHARD, M. J. 2003: Developmental plasticity and evolution. England: Oxford University Press.
  • YOUNGSTON, N. y WHITELAW, E. 2008: «Transgenerational epigenetic effects». Annu. Rev. Genomics Hum. Genet. 9, pp. 233-257.