Mapping impact of intense rainfall on a high-severity burned area using principal component analysis

  1. M. Francos 1
  2. P. Pereira 2
  3. X. Úbeda 1
  1. 1 Universitat de Barcelona
    info

    Universitat de Barcelona

    Barcelona, España

    ROR https://ror.org/021018s57

  2. 2 Mykolas Romeris University
    info

    Mykolas Romeris University

    Vilna, Lituania

    ROR https://ror.org/0052k0e03

Journal:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Lasanta Martínez, Teodoro (ed. lit.)

ISSN: 0211-6820 1697-9540

Year of publication: 2019

Volume: 45

Issue: 2

Pages: 601-621

Type: Article

DOI: 10.18172/CIG.3516 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Cuadernos de investigación geográfica: Geographical Research Letters

Sustainable development goals

Abstract

High-severity wildfires have a major impact on soil properties. Moreover, recently burned areas are highly sensitive to intense rainfall events. However, little is known about the impact of extreme rainfall on the relationship between soil properties and their spatial distribution. The objective of this study is to examine the effects of an intense rainfall event on soil properties and their spatial distribution in a small area using principal component analysis (PCA). The variables studied were aggregate stability (AS), total nitrogen (TN), soil organic matter (SOM), inorganic carbon (IC), C/N ratio, calcium carbonates (CaCO3), pH, electrical conductivity (EC), available phosphorus (P), extractable calcium (Ca), extractable magnesium (Mg), extractable sodium (Na) and extractable potassium (K). Each PCA (before and after intense rainfall event) allowed us to extract five factors. Factor 1 in the pre-intense rainfall event PCA explained the variance of EC, available P, extractable Mg and K; factor 2 accounted for TN, SOM (high loadings), IC and CaCO3 (low loadings); factor 3 explained AS, extractable Ca and Na; and, factors 4 and 5 accounted for C/N and pH, respectively. Factor 1 in the after intense rainfall event PCA explained the variance of TN, SOM, EC, available P, extractable Mg and K (high loadings) and pH (low loading); factor 2 accounted for IC and CaCO3; factor 3 explained extractable Ca and Na; factor 4 accounted for AS; and, factor 5 for C/N. The results showed that the intense rainfall event changed the relationship between the variables, strengthening the correlation between them, especially in the case of TN, SOM, EC, available P, extractable Mg and extractable Ca with AS. In the case of the pre-intense rainfall event PCA, the best- fit variogram models were: factors 1 and 2 – the linear model; factors 3 and 4 – the pure nugget effect; and, factor 5 – the spherical model. In the case of the factors after intense rainfall event PCA, with the exception of factor 5 (spherical model), the best fit model was the linear model. The PCA score maps illustrated a marked change in the spatial distribution of the variables before and after the intense rainfall event. Important differences were detected in AS, pH, C/N IC, CaCO3, extractable Ca and Na.

Funding information

This study was supported by the POSTFIRE Project (CGL2013-47862-C2-1 and 2-R) and the POSTFIRE_CARE Project (CGL2016-75178-C2-2-R) sponsored by the Spanish Ministry of Economy and Competitiveness and AEI/FEDER, EU. Support was also received from the FPU Program (FPU 014/00037), sponsored by the Ministry of Education, Culture and Sports; EST16/00183 – a short-stay grant at MykolasRomeris University (Vilnius, Lithuania), provided by the Ministry of Education, Culture and Sports; and the Program2017SGR1344 of the Generalitat de Catalunya.

Funders

Bibliographic References

  • Al-Omran, A.M., Al-Wabel, M.I., El-Maghraby, S.E., Nadeem, M.E., Al-Sharani, S. 2013. Spatial variability for some properties of wastewater irrigated soils. Journal of the Saudi Society of Agricultural Science 12, 167-175. https://doi.org/10.1016/j.jssas.2012.12.001.
  • Bada, D., Martí, C. 2003. Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Research and Management 17, 23-41. https://doi.org/10.1080/15324980301595.
  • Batista, A.C., Sousa, A.J., Batista, M.J., Viegas, L. 2001. Factorial kriging with external drift: a case study on the Penedono region, Portugal. Applied Geochemistry 16, 921-929. https://doi.org/10.1016/S0883-2927(00)00069-X.
  • Behera, S.K., Shukla, A.K. 2015. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degradation & Development 26, 71-79. https://doi.org/10.1002/ldr.2306.
  • Blankinship, J.C., Fonte, S.J., Six, J., Schimel, J.P. 2016. Plant versus microbial control on soil aggregate stability in seasonally dry ecosystem. Geoderma 272, 39-50. https://doi.org/10.1016/j.geoderma.2016.03.008.
  • Bocchi, S., Castrignano, A., Fornaro, F., Maggiore, T. 2000. Application of a factorial kriging for mapping soil variation at field scale. European Journal of Agronomy 13, 295-308. https://doi.org/10.1016/S1161-0301(00)00061-7.
  • Bodí, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P.,Cerdà, A., Mataix-Solera, J. 2014. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews 130, 103-127. https://doi.org/10.1016/j.earscirev.2013.12.007.
  • Boruvka, L., Vacek, O., Jehlicka, J. 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements. Geoderma 128, 289-300. https://doi.org/10.1016/j.geoderma.2005.04.010.
  • Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E. 1994. Field scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal 58, 1501-1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x.
  • Chien, Y.L., Lee, D.Y., Guo, H.Y. 1997. Geostatistical analysis of soil properties of mid-west Taiwan soils. Soil Science 162, 291-298. https://doi.org/10.1097/00010694-199704000-00007.
  • De Luis, M., González-Hidalgo, J.C., Raventós, J. 2003. Effects of fire and torrential rainfall on erosion in a Mediterranean gorse community. Land Degradation & Development 14, 202-213. https://doi.org/10.1002/ldr.547.
  • Dlapa, P., Bodí, M., Mataix-Solera, J., Cerdà, A., Doerr, S.H. 2013. FT-IR spetroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena 108, 35-43. https://doi.org/10.1016/j.catena.2012.02.011.
  • Dodonov, P., Oliveira Xavier, R., Santos Tiberio, F.C., Lucena, I.C., Zanelli, C.B., Silva Matos, D.M. 2014. Driving factors of small-scale variability in savanna plant population after a fire. Acta Oecologica 56, 47-55. https://doi.org/10.1016/j.actao.2014.02.003.
  • Doerr, S.H., Santin, C., Reardon, J., Mataix-Solera, J., Stoof, C., Bryant, R., Miesel, J., Badia, D. 2017. Soil heating during wildfires and prescribed burns: a global evaluation based on existing new data. Geophysical Research Abstracts. EGU2017-17957-1.
  • Facchinelli, A., Sacchi, E., Mallen, L. 2001. Multivariate statistical and GIS-based approach to identify heavy metals sources in soils. Environmental Pollution 114, 313-324. https://doi.org/10.1016/S0269-7491(00)00243-8.
  • Francos, M., Úbeda, X., Tort, J., Panareda, J.M., Cerdà, A. 2016a. The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula. Global and Planetary Change 145, 11-16. https://doi.org/10.1016/j.gloplacha.2016.07.016.
  • Francos, M., Pereira, P., Alcañiz, M., Mataix-Solera, J., Úbeda, X. 2016. Impact of an intense rainfall event on soil properties following a wildfire in a Mediterranean environment (North-East Spain). Science of the Total Environment 572, 1353-1362. https://doi.org/10.1016/j.scitotenv.2016.01.145.
  • García-Orenes, F., Guerrero, C., Mataix-Solera, J., Navarro-Pedreno, J., Gómez, I., Mataix-Beneyeto, J. 2005. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil & Tillage Research 82, 65-76. https://doi.org/10.1016/j.still.2004.06.004.
  • Gimeno-García, E., Andreu, V., Rubio, J.L. 2004. Spatial patterns of soil temperatures during experimental fires. Geoderma 118, 17-38. https://doi.org/10.1016/S0016-7061(03)00167-8.
  • Golobocanin, D., Skrbic, B.D., Miljevic, N.R. 2004. Principal component analysis for soil contamination with PAH’s. Chemometrics and Intelligent Laboratory Systems 72, 219-223. https://doi.org/10.1016/j.chemolab.2004.01.017.
  • González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H. 2004. The effect of fire on soil organic matter. Environmental International 30, 855-870. https://doi.org/10.1016/j.envint.2004.02.003.
  • Hernández, T., García, C., Reinhardt, I. 1997. Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forests. Biology and Fertility of Soils 25, 109-116. https://doi.org/10.1007/s003740050289.
  • Inbar, A., Lado, M., Sternberg, M., Tenau, H., Ben-Hur, M. 2014. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma 221-222, 131-138. https://doi.org/10.1016/j.geoderma.2014.01.015.
  • Jeelani, J., Kirmani, N.A., Sofi, J.A., Mir, S.A., Wani, J.A., Rasool, R., Sadat, S. 2017. An overview of the spatial variability of soil microbiological properties using Geostatistics. International Journal of Current Microbiology and Applied Science 6, 1132-1145. https://doi.org/10.20546/ijcmas.2017.604.140.
  • Jordán, A., Zavala, L., Granjed, A., Gordillo-Rivero, A., García-Moreno, J., Pereira, P., Bárcenas-Moreno, G., de Celis, R., Jiménez-Compán, E., Alanis, N. 2016. Wettability of ash conditions splash erosion and runoff rates post-fire. Science of the Total Environment 572, 1261-1268. https://doi.org/10.1016/j.scitotenv.2015.09.140.
  • Kokaly, R.F., Rockwell, B.W., Haire, S.L., King, T.V.V. 2007. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sensing of Environment 106, 305-325. https://doi.org/10.1016/j.rse.2006.08.006.
  • Kurunc, A., Ersahin, S., Sonmez, N.K., Kaman, H., Uz, I., Uz, B.Y., Aslan, G.E. 2016. Seasonal changes on spatial variation of some groundwater quality variables in a large irrigated coastal Mediterranean region of Turkey. Science of the Total Environment 554, 53-63. https://doi.org/10.1016/j.scitotenv.2016.02.158.
  • Levula, T., Saarsalmi, A., Rantavaara, A. 2000. Effects of ash fertilization and prescribed burning on macronutrient, heavy metal, Sulphur and 137Cs concentration in lingonberries (Vaccinium vitis-idaea). Forest Ecology and Management 126, 269-279. https://doi.org/10.1016/S0378-1127(99)00110-3.
  • Lombao, A., Barreiro, A., Carballas, T., Fonturbel, M.T., Martin, A., Vega, J.A., Fernández, C., Díaz-Ravina, M. 2015. Changes in soil properties after a wildfire in Fragas do Eume Natural Park (Galicia, NW Spain). Catena 135, 409-418. https://doi.org/10.1016/j.catena.2014.08.007.
  • López-Martín, M., Velasco-Molina, M., Knicker, H. 2016. Variability of the quality and quantity of organic matter in soil affected by multiple wildfires. Journal of Soils Sediments 16, 360-370. https://doi.org/10.1007/s11368-015-1223-2.
  • Mahmoodabadi, M., Yazdanpanah, N., Rodríguez-Sinobas, L., Pazira, E., Neshat, A. 2013. Reclamation of calcareous saline sodic soil with difference ammendements (I): Redistribution of soluble cations within the soil profile. Agricultural Water Management 120, 30-38. https://doi.org/10.1016/j.agwat.2012.08.018.
  • Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M. 2011. Fire effects on soil aggregation. Earth-Science Reviews 109, 44-60. https://doi.org/10.1016/j.earscirev.2011.08.002.
  • Merino, A., Chávez-Vergara, B., Salgado, J., Fonturbel, M.T., García-Oliva, F., Vega, J.A. 2015. Variability in the composition of charred litter generated by wildfire in different ecosystems. Catena 133, 52-63. https://doi.org/10.1016/j.catena.2015.04.016.
  • Mills, A.J., Fey, M.V. 2004. Frequent fires intensify soil crusting: physicochemical feedback in the pedoderm of long-term burn experiments in South Africa. Geoderma 121, 45-54. https://doi.org/ 10.1016/j.geoderma.2003.10.004.
  • Novara, A., Gristina, L., Bodí, M.B., Cerdà, A. 2011. The impact of fire on redistribution of soil organic matter on a mediterranean hillslope under maquia vegetation type. Land Degradation & Development 22, 530-536. https://doi.org/10.1002/ldr.1027.
  • Oliver, M.A., Webster, R. 2014. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 113, 56-69. https://doi.org/10.1016/j.catena.2013.09.006.
  • Outeiro, L., Asperó, F., Úbeda, X. 2008. Geostatistical methods to study spatial variability of soil cations after a prescribed fire and rainfall. Catena 74, 310-320. https://doi.org/10.1016/j.catena.2008.03.019.
  • Pacheco, E. 2010. Dinámicas hidrológicas en la cuenca mediterránea litoral del río Daró. Años 2004 - 2010. Trabajo Fin de Máster, Universitat de Barcelona. 77 pp.
  • Paz-Ferreiro, J., Vazquez, E.V., Vieira, S.R. 2010. Geostatistical analysis of geochemical dataset. Bragantia 69, 121-129. http://doi.org/10.1590/S0006-87052010000500013.
  • Pereira, P., Brevik, E.C., Cerdà, A., Úbeda, X., Novara, A., Francos, M., Rodrigo-Comino, J., Bogonovic, I., Khaledian, Y. 2017. Mapping ash CaCO3, pH and extractable elements using principal component analysis. In: P. Pereira, E.C. Brevik, M. Muñoz-Rojas, B. Miller (Eds.), Soil Mapping and Process Modeling for Sustainable Land Use Management. Elsevier, Netherlands, pp. 319-334.
  • Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D., Jordán, A., Burguet, M. 2013. Spatial models for monitoring the spatio-temporal evolution of ashes after fire-a case study of a burnt grassland in Lithuania. Solid Earth 4, 153-165. https://doi.org/10.5194/se-4-153-2013.
  • Pereira, P., Oliva, M., Baltrenaite, E. 2010. Modelling extreme precipitation in hazardous mountainous areas. Contribution to landscape planning and environmental management. Journal of Environmental Engineering and Landscape Management 18, 329-342. https://doi.org/10.3846/jeelm.2010.38.
  • Pereira, P., Pranskevicius, M., Bolutiene, V., Jordán, A., Zavala, L., Úbeda, X., Cerdà, A. 2015. Short term spatio-temporal variability of soil water extractable Al and Zn after a low severity grassland fire in Lithuania. Flamma 6, 50-57.
  • Pereira, P., Úbeda, X., Martín, D. 2012. Fire severity effects on ash chemical composition and water-extractable elements. Geoderma 191, 105-114. https://doi.org/10.1016/j.geoderma.2012.02.005.
  • Pereira, P., Úbeda, X., Martín, D., Cerdà, A., Mataix-Solera, J., Burget, M. 2014. Wildfire effects on ash extractable elements in a Quercus suber forest located in Portugal. Hydrological Processes 28, 3681-3690. https://doi.org/10.1016/10.1002/hyp.9907.
  • Robichaud, P.R., Lewis, S.A., Laes, D.Y.M., Hudak, A.T., Kokaly, F., Zamudio, J.A. 2007. Postfire soil burn severity mapping with hyperspectral image unmixing. Remote Sensing of Environment 108, 467-480.
  • Rodríguez-Martín, J.A., Ramos-Miras, J.J., Boluda, R., Gil, C. 2013. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 200-201, 180-188. https://doi.org/10.1016/j.geoderma.2013.02.014.
  • Romero-Ruiz, M., Etter, A., Sarmiento, A., Tansey, K. 2010. Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America. Global Change Biology 16, 2013-2023. https://doi.org/10.1111/j.1365-2486.2009.02081.x.
  • Saby, N.P.A., Thioulouse, J., Jolivet, C.C., Ratie, C., Boulonne, L., Bispo, A., Arrouays, D. 2009. Multivariate analysis of the spatial patterns of 8 trace elements using French soil monitoring data. Science of the Total Environment 407, 5644-5652. https://doi.org/10.1016/j.scitotenv.2009.07.002.
  • Shakesby, R.A., Moody, J., Martin, D.A., Robichaud, P.R. 2016. Synthesizing empirical results to improve predictions of post-wildfire runoff and erosion response. International Journal of Wildland Fire 25, 257-261.
  • Smithwick, E.A.H., Naithani, K.J., Balser, T.C., Romme, W.H., Turner, M.G. 2012. Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance. PLoS ONE 7 (11), e50597. https://doi.org/10.1371/journal.pone.0050597.
  • Smithwick, E.A.H., Turner, M.G., Mack, M.C., Chapin, III F.S. 2005. Post-fire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems 8, 163-181. https://doi.org/10.1007/s10021-004-0097-8.
  • Soil Survey Staff. 2014. Keys to soil taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.
  • Úbeda, X., Outeiro, L.R., Sala, M. 2006. Vegetation regrowth after a differential intensity forest fire in a Mediterranean environment, northeast Spain. Land Degradation & Development 17, 429-440. https://doi.org/10.1002/ldr.748.
  • Úbeda, X., Pereira, P., Outeiro, L., Martin, D. 2009. Effects of fire temperature on physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation & Development 20, 589-608. https://doi.org/10.1002/ldr.930.
  • Usowicz, B., Lipiec, J. 2017. Spatial variability of soil properties and cereal yield in a cultivated field sandy soil. Soil & Tillage Research 174, 241-250. https://doi.org/10.1016/j.still.2017.07.015.
  • Wang, L., Coles, N., Wu, C., Wu, J. 2014. Effect of long-term reclamation on soil properties on a coastal plan, Southwest China. Journal of Coastal Research 30, 661-669. https://doi.org/10.2112/JCOASTRES-D-13-00129.1.
  • Webster, R., Oliver, M.A. 2007. Geostatistics for environmental scientists. John Wiley & Sons. 333 pp.
  • Woods, S.W., Birkas, A., Ahl, R. 2007. Spatial variability of soil hydrophobicity after fires in Montana and Colorado. Geomorphology 86, 465-479. https://doi.org/10.1016/j.geomorph.2006.09.015.