Búsqueda de señal orbital en isótopos estables de carbono y oxígeno de belemnites del Jurásico Inferior de la cuenca Vasco-Cantábrica mediante el periodograma suavizado de Lomb-Scargle

  1. Polanco-Martínez, Josué M. 1
  1. 1 Basque Centre for Climate Change; Universidad de Salamanca, España
Revista:
Estudios geológicos

ISSN: 0367-0449

Año de publicación: 2021

Volumen: 77

Número: 1

Tipo: Artículo

DOI: 10.3989/EGEOL.44231.595 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Estudios geológicos

Resumen

Los isótopos estables obtenidos de muestras fosilizadas de macrofósiles, como los belemnites, son unos de los pocos registros geológicos existentes del Jurásico Inferior, por lo cual han sido usados para reconstrucciones de temperaturas y salinidades del océano de esa época. Sin embargo, hasta la fecha no han sido utilizados para averiguar si estos paleoindicadores pudieron registrar algún tipo de evento periódico relacionado con los ciclos orbitales de la Tierra. Por esta razón y teniendo en cuenta varias de las limitaciones al utilizar estos tipos de datos, en este trabajo se presenta un novedoso estudio donde se aplica una técnica avanzada de análisis espectral conocida como el periodograma suavizado de Lomb-Scargle, la cual puede ser aplicada de modo directo a series temporales no equiespaciadas contaminadas por ruido. El objetivo de este trabajo es identificar la presencia de ciclos orbitales que se hayan podido registrar en series temporales de valores medios de δ18O y δ13C provenientes de muestras fosilizadas de belemnites recolectadas en la cuenca Vasco-Cantábrica teniendo en cuenta los errores de datación de estas muestras en la estimación del espectro. De manera especial se hace énfasis en la búsqueda de alguno de los ciclos de la excentricidad, como el de largo periodo localizado ca. 400 Ka o el de menor periodo localizado ca. 100 ka, porque se sabe que el ciclo de 400 Ka ha permanecido invariable desde el Mesozoico hasta el presente y porque ambos ciclos han sido identificados en registros estratigráficos del Mesozoico recolectados en diferentes áreas geográficas. Sin embargo, a pesar de la rigurosidad de nuestros análisis, no se encontró señal orbital de 400 Ka aunque si una localizada cerca de los 109 Ka, la cual podría estar relacionada con los ciclos de corto periodo de la excentricidad de la Tierra.  

Referencias bibliográficas

  • Anderson, T.F.; Popp, B.N.; Williams, A.C.; Ho, L.Z. & Hudson, J.D. (1994). The stable isotopic records of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), UK: palaeoenvironmental implications. Journal of the Geological Society, 151 (1): 125-138. https://doi.org/10.1144/gsjgs.151.1.0125
  • Arabas, A.; Schlögl, J. & Meister, C. (2017). Early Jurassic carbon and oxygen isotope records and seawater temperature variations: Insights from marine carbonate and belemnite rostra (Pieniny Klippen Belt, Carpathians). Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 119-135. https://doi.org/10.1016/j.palaeo.2017.06.007
  • Armendáriz, M.; Rosales, I.; Bádenas, B.; Pinuela, L.; Aurell, M. & García-Ramos, J.C. (2013). An approach to estimate Lower Jurassic seawater oxygen-isotope composition using δ18O and Mg/Ca ratios of belemnite calcites (Early Pliensbachian, northern Spain). Terra Nova, 25 (6): 439-445. https://doi.org/10.1111/ter.12054
  • Bádenas, B.; Aurell, M.; Armendáriz, M., Rosales, I.; García-Ramos, J.C. & Piñuela, L. (2012). Sedimentary and chemostratigraphic record of climatic cycles in Lower Pliensbachian marl-limestone platform successions of Asturias (North Spain). Sedimentary Geology, 281: 119-138. https://doi.org/10.1016/j.sedgeo.2012.08.010
  • Bailey, T.R.; Rosenthal, Y.; McArthur, J.M.; Van de Schootbrugge, B. & Thirlwall, M.F. (2003). Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth and Planetary Science Letters, 212(3-4): 307-320. https://doi.org/10.1016/S0012-821X(03)00278-4
  • Baudin, F.; Herbin, J.P.; Bassoullet, J.P.; Dercourt, J.; Lachkar, G.; Manivit, H. & Renard, M. (1990). Distribution of organic matter during the Toarcian in the Mediterranean Tethys and Middle East. American Association of Petroleum Geologists, Tulsa, Oklahoma, USA. https://doi.org/10.1306/St30517C6
  • Benito, M.I.; Reolid, M. & Viedma, C. (2016). On the microstructure, growth pattern and original porosity of belemnite rostra: insights from calcitic Jurassic belemnites. Journal of Iberian Geology, 42 (2): 201-226.
  • Berger, A. & Loutre, M.F. (2004). Astronomical theory of climate change. Journal of Physics IV France, 121: 1-35. https://doi.org/10.1051/jp4:2004121001
  • Berreteaga, A.; Robles, S.; Rosales, I. & Quesada, S. (2002). Ciclos de precesión en el Toarciense de la Cuenca Vasco-Cantábrica. Geogaceta, 32: 259-262.
  • Blaauw, M. (2012). Out of tune: the dangers of aligning proxy archives. Quaternary Science Reviews, 36: 38-49. https://doi.org/10.1016/j.quascirev.2010.11.012
  • Bodin, S.; Krencker, F.N.; Kothe, T.; Hoffmann, R.; Mattioli, E.; Heimhofer, U. & Kabiri, L. (2016). Perturbation of the carbon cycle during the late Pliensbachian-early Toarcian: New insight from high-resolution carbon isotope records in Morocco. Journal of African Earth Sciences, 116: 89-104. https://doi.org/10.1016/j.jafrearsci.2015.12.018
  • Braga, J.C.; Comas-Rengifo, M.J.; Goy, A.; Rivas, P. & Yebenes, A. (1988). El lias inferior y medio en zona central de la Cuenca Vasco-Cantabrica (Camino, Santander). III Coloquio de Estratigrafía y Paleontología del Jurásico de España, Logroño, 17-43.
  • Comas-Rengifo, M.J.; Goy, A.; Rivas, P. & Yebenes, A. (1988). El Toarciense en Castillo Pedroso (Santander). III Coloquio de Estratigrafía y Paleontología del Jurásico de España, Logroño, 63-71.
  • Crucifix, M.; Loutre, M.-F. & Berger, A. (2006). The climate response to the astronomical forcing. Space Science Reviews, 125 (1-4): 213-226. https://doi.org/10.1007/s11214-006-9058-1
  • Decourt, J.; Ricou, L.E. & Vrielynck, B. (1993). Atlas Tethys Palaeoenvironmental Maps. Gauthier-Vollars, Paris, France.
  • Doyle, P. & MacDonald, D.I.M. (1993). Belemnite battlefields. Lethaia, 26 (1): 65-80. https://doi.org/10.1111/j.1502-3931.1993.tb01513.x
  • Eyer, L. & Bartholdi, P. (1999). Variable stars: which Nyquist frequency? Astronomy and Astrophysics, Supplement Series, 135 (1): 1-3. https://doi.org/10.1051/aas:1999102
  • Fleitmann, D.; Burns, S.J.; Mudelsee, M.; Neff, U.; Kramers, J.; Mangini, A. & Matter, A. (2003). Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science, 300 (5626): 1737-1739. https://doi.org/10.1126/science.1083130 PMid:12805545
  • Gilman, D.L.; Fuglister, F.J. & Mitchell Jr, J.M. (1963). On the power spectrum of "red noise". Journal of Atmospheric Sciences, 20 (2): 182-184. https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2
  • Gómez, J.J.; Goy, A. & Canales, M.L. (2008). Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in central and Northern Spain. Comparison with other European sections. Palaeogeography, Palaeoclimatology, Palaeoecology, 258 (1-2): 28-58. https://doi.org/10.1016/j.palaeo.2007.11.005
  • Gómez, J.J.; Comas-Rengifo, M.J. & Goy, A. (2016). Palaeoclimatic oscillations in the Pliensbachian (early Jurassic) of the Asturian Basin (northern Spain). Climate of the Past, 12 (5): 1199-1214. https://doi.org/10.5194/cp-12-1199-2016
  • Hasselmann, K. (1976). Stochastic climate models Part I. Theory. Tellus, 28 (6): 473-485. https://doi.org/10.3402/tellusa.v28i6.11316
  • Hermoso, M.; Minoletti, F.; Rickaby, R.E.; Hesselbo, S.P.; Baudin, F. & Jenkyns, H.C. (2012). Dynamics of a stepped carbon-isotope excursion: Ultra high-resolution study of Early Toarcian environmental change. Earth and Planetary Science Letters, 319: 45-54. https://doi.org/10.1016/j.epsl.2011.12.021
  • Hesselbo, S. P.; Gröcke, D.R.; Jenkyns, H.C.; Bjerrum, C.J.; Farrimond, P.; Bell, H.S. M. & Green, O.R. (2000). Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406(6794): 392-395. https://doi.org/10.1038/35019044 PMid:10935632
  • Hinnov, L.A. & Park, J.F. (1999). Strategies for assessing Early-Middle (Pliensbachian-Aalenian)-Jurassic cyclochronologies. Philosophical Transactions of the Royal Society A, 357: 1831-1859. https://doi.org/10.1098/rsta.1999.0403
  • Hinnov, L.A. & Ogg, J.G. (2007). Cyclostratigraphy and the Astronomical Time Scale. Stratigraphy, 4 (2-3): 239-251.
  • Hoffmann, R. & Stevens, K. (2020). The palaeobiology of belemnites-foundation for the interpretation of rostrum geochemistry. Biological Reviews, 95 (1): 94-123. https://doi.org/10.1111/brv.12557 PMid:31729839
  • Huybers, P.J. & Wunsch, C. (2004). A Depth-Derived Pleistocene Age-Model: Uncertainty Estimates, Sedimentation Variability, and Nonlinear Climate Change. Paleoceanography, 19: 1-24. https://doi.org/10.1029/2002PA000857
  • Immenhauser, A.; Schoene, B.R.; Hoffmann, R. & Niedermayr, A. (2016). Mollusc and brachiopod skeletal hard parts: intricate archives of their marine environment. Sedimentology, 63(1): 1-59. https://doi.org/10.1111/sed.12231
  • Jenkyns, H.C.; Jones, C.E.; Grocke, D.R.; Hesselbo, S.P. & Parkinson, D.N. (2002). Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society, 159 (4): 351-378. https://doi.org/10.1144/0016-764901-130
  • Kemp, D.B.; Coe, A.L.; Cohen, A.S. & Schwark, L. (2005). Astronomical pacing of methane release in the Early Jurassic period. Nature, 437(7057): 396-399. https://doi.org/10.1038/nature04037 PMid:16163353
  • Kemp, D.B.; Coe, A.L., Cohen, A.S. & Weedon, G.P. (2011). Astronomical forcing and chronology of the early Toarcian (Early Jurassic) oceanic anoxic event in Yorkshire, UK. Paleoceanography, 26 (4): PA4210. https://doi.org/10.1029/2011PA002122
  • Kemp, D.B. & Izumi, K. (2014). Multiproxy geochemical analysis of a Panthalassic margin record of the early Toarcian oceanic anoxic event (Toyora area, Japan). Palaeogeography, Palaeoclimatology, Palaeoecology, 414: 332-341. https://doi.org/10.1016/j.palaeo.2014.09.019
  • Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M. & Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428: 261-285. https://doi.org/10.1051/0004-6361:20041335
  • Laskar, J.; Fienga, A.; Gastineau, M. & Manche, H. (2011). La2010: a new orbital solution for the long-term motion of the Earth. Astronomy & Astrophysics, 532: A89. https://doi.org/10.1051/0004-6361/201116836
  • Lisiecki, L. (2005). Paleoclimate time series: New alignment and compositing techniques, a 5.3-Myr benthic δ18O stack, and analysis of Pliocene-Plesitocene climate transitions. Ph.D. thesis, Brown University, USA, 106 pp.
  • Lomb, N.R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Sciences, 39 (2): 447-462 https://doi.org/10.1007/BF00648343
  • McArthur, J.M.; Donovan, D.T.; Thirlwall, M.F.; Fouke, B.W. & Mattey, D. (2000). Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth and Planetary Sciences Letters, 179 (2): 269-285. https://doi.org/10.1016/S0012-821X(00)00111-4
  • McArthur, J.M.; Howarth, R.J. & Bailey, T.R. (2001). Strontium Isotope Stratigraphy: LOWESS version 3: Best Fit to the Marine Sr-Isotope Curve for 0-509 Ma and Accompanying Look-up Table for Deriving Numerical Age. The Journal of Geology, 109: 155-170. https://doi.org/10.1086/319243
  • McArthur, J.M.; Doyle, P.; Leng, M.J.; Reeves, K.; Williams, C.T.; Garcia-Sánchez, R. & Howarth, R.J. (2007). Testing palaeo-environmental proxies in Jurassic belemnites: Mg/Ca, Sr/Ca, Na/Ca, δ18O and δ13C. Palaeogeography, Palaeoclimatology, Palaeoecology, 252 (3-4): 464-480. https://doi.org/10.1016/j.palaeo.2007.05.006
  • Medina-Elizalde, M.; Polanco-Martínez, J.M.; Lases-Hernández, F.; Bradley, R. & Burns, S. (2016). Testing the "tropical storm" hypothesis of Yucatan Peninsula climate variability during the Maya Terminal Classic Period. Quaternary Research, 86 (2): 111-119. https://doi.org/10.1016/j.yqres.2016.05.006
  • Mudelsee, M.; Scholz, D.; Röthlisberger, R.; Fleitmann, D.; Mangini, A. & Wolff, E.W. (2009). Climate spectrum estimation in the presence of timescale errors. Nonlinear Processes in Geophysics, 16: 43-56. https://doi.org/10.5194/npg-16-43-2009
  • Nava, A. (2010). Fourier spectral analysis for unevenly spaced, average value, data. Computers & Geosciences, 36 (7): 853-860. https://doi.org/10.1016/j.cageo.2009.12.002
  • Oliveira, D.; Sánchez Goñi, M.F.; Naughton, F.; Polanco-Martínez, J.; Jimenez-Espejo, F.J.; Grimalt, J.O.; Martrat, B.; Voelker, A.H.; Trigo, R. & Hodell, D.; Abrantes F.; & Desprat, S. (2017). Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial. Quaternary Science Reviews, 161: 1-17. https://doi.org/10.1016/j.quascirev.2017.02.013
  • Olsen, P.E. (1986). A 40-million-year lake record of early mesozoic orbital climatic forcing. Science, 234 (4778): 842-848. https://doi.org/10.1126/science.234.4778.842 PMid:17758107
  • Olsen, P.E. & Kent, D.V. (1996). Milankovitch climate forcing in the tropics of Pangea during the Late Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 122 (1-4): 1-26. https://doi.org/10.1016/0031-0182(95)00171-9
  • Olsen, P.E. & Kent, D.V. (1999). Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behaviour of the planets. Philosophical Transactions of the Royal Society A, 357: 1761-1786. https://doi.org/10.1098/rsta.1999.0400
  • Pálfy, J.; Smith, P.L. & Mortensen, J.K. (2000). A U-Pb and 40 Ar/39 Ar time scale for the Jurassic. Canadian Journal of Earth Sciences, 37 (6): 923-944. https://doi.org/10.1139/e00-002
  • Pardo-Iguzquiza, E. & Rodríguez-Tovar, F.J. (2011). Implemented Lomb-Scargle periodogram: a valuable tool for improving cyclostratigraphic research on unevenly sampled deep-sea stratigraphic sequences. Geo-Marine Letters, 31(5): 537-545. https://doi.org/10.1007/s00367-011-0247-x
  • Pardo-Igúzquiza, E. & Rodríguez-Tovar, F.J. (2012). Spectral and cross-spectral analysis of uneven time series with the smoothed Lomb-Scargle periodogram and Monte Carlo evaluation of statistical significance. Computers & Geosciences, 49: 207-216. https://doi.org/10.1016/j.cageo.2012.06.018
  • Pardo-Igúzquiza E. & Rodríguez-Tovar F.J. (2013). Análisis espectral de series temporales de variables geológicas con muestreo irregular. Boletín Geológico y Minero, 124 (3): 323-337.
  • Pisias, N.G. & Mix, A.C. (1988). Aliasing of the geologic record and the search for long-period Milankovitch cycles. Paleoceanography, 3 (5): 613-619. https://doi.org/10.1029/PA003i005p00613
  • Podlaha, O.G.; Mutterlose, J. & Veizer, J. (1998). Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/Early Cretaceous successions. Americal Journal of Sciences, 298 (4): 324-347. https://doi.org/10.2475/ajs.298.4.324
  • Polanco-Martínez, J.M. (2012). Aplicación de técnicas estadísticas en el estudio de fenómenos ambientales y ecosistémicos. Tesis doctoral, Universidad del País Vasco, 208 pp.
  • Polanco-Martínez, J.M. (2014). Estimación espectral de datos ambientales no equiespaciados vía el periodograma suavizado de Lomb-Scargle. Una breve revisión. Analítika: revista de análisis estadístico, 8 (2): 7-23.
  • Polanco-Martínez, J.M. & Faria, S. (2018). Estimation of the significance of the Foster's wavelet spectrum by means of a permutation test and its application for paleoclimate records. Boletín Geológico y Minero, 129 (3): 549-564. https://doi.org/10.21701/bolgeomin.129.3.006
  • Price, G.D. & Sellwood, B.W. (1997). Warm palaeotemperatures from high Late Jurassic palaeolatitudes (Falkland Plateau): Ecological, environmental or diagenetic controls? Palaeogeography, Palaeoclimatology, Palaeoecology, 129 (3): 315-328. https://doi.org/10.1016/S0031-0182(96)00058-2
  • Remírez, M.N. & Algeo, T.J. (2020). Carbon-cycle changes during the Toarcian (Early Jurassic) and implications for regional versus global drivers of the Toarcian oceanic anoxic event. Earth-Science Reviews, 209: 103283. https://doi.org/10.1016/j.earscirev.2020.103283
  • Rexfort, A. & Mutterlose, J. (2006). Stable isotope records from Sepia officinalis - a key to understanding the ecology of belemnites? Earth and Planetary Sciences Letters, 30: 212-221. https://doi.org/10.1016/j.epsl.2006.04.025
  • Rosales, I.; Quesada, S. & Robles, S. (2001). Primary and diagenetic isotopic signals in fossils and hemipelagic carbonates: the Lower Jurassic of northern Spain. Sedimentology, 48 (5): 1149-1169. https://doi.org/10.1046/j.1365-3091.2001.00412.x
  • Rosales, I.; Quesada, S. & Robles, S. (2004a). Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 203: 253-275. https://doi.org/10.1016/S0031-0182(03)00686-2
  • Rosales, I.; Robles, S. & Quesada, S. (2004b). Elemental and oxygen isotope composition of Early Jurassic belemnites: salinity vs. temperature signals. Journal of Sedimentary Research, 74 (3): 342-354. https://doi.org/10.1306/112603740342
  • Rosales, I.; Quesada, S. & Robles, S. (2006). Geochemical arguments for identifying second-order sea-level changes in hemipelagic carbonate ramp deposits. Terra Nova, 18 (4): 233-240. https://doi.org/10.1111/j.1365-3121.2006.00684.x
  • Sælen, G.; Doyle, P. & Talbot, M.R. (1996). Stable-isotope analyses of belemnite rostra from the Whitby Mudstone, England: surface water conditions during deposition of a marine black shale. Palaios, 11 (2): 97-117. https://doi.org/10.2307/3515065
  • Scargle, J. D. (1982). Studies in astronomical time series analysis. II- Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal, 263: 835-853. https://doi.org/10.1086/160554
  • Scargle, J.D. (1989). Studies in astronomical time series analysis. III- Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data. The Astrophysical Journal, 343: 874-887. https://doi.org/10.1086/167757
  • Schulz, M. & Mudelsee, M. (2002). REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences, 28 (3): 421-426. https://doi.org/10.1016/S0098-3004(01)00044-9
  • Schulz, M. & Stattegger, K. (1997). SPECTRUM: Spectral analysis of unevenly spaced paleoclimatic time series. Computers & Geosciences, 23 (9): 929-945. https://doi.org/10.1016/S0098-3004(97)00087-3
  • Storm, M.S.; Hesselbo, S.P.; Jenkyns, H.C.; Ruhl, M.; Ullmann, C.V.; Xu, W.; Leng, M.J.; Riding, J.B. & Gorbanenko, O. (2020). Orbital pacing and secular evolution of the early jurassic carbon cycle. Proceedings of the National Academy of Sciences, 117 (8): 3974-3982. https://doi.org/10.1073/pnas.1912094117 PMid:32041889 PMCid:PMC7049106
  • Suan, G.; Pittet, B.; Bour, I.; Mattiolia, E.; Duarte, L.V. & Mailliot, S. (2008). Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: Consequence for its possible causes. Earth and Planetary Science Letters, 267 (3-4): 666-679. https://doi.org/10.1016/j.epsl.2007.12.017
  • Van Dongen, H.P.A.; Olofsen, E.; Van Hartevelt, J.H. & Kruyt, E.W. (1999). A procedure of multiple period searching in unequally spaced time-series with the Lomb-Scargle method. Biological Rhythm Research, 30 (2): 149-177. https://doi.org/10.1076/brhm.30.2.149.1424 PMid:11708361
  • VanderPlas, J.T. (2018). Understanding the Lomb-Scargle periodogram. The As-trophysical Journal Supplement Series, 236 (1): 16. https://doi.org/10.3847/1538-4365/aab766
  • Vio, R.; Diaz-Trigo, M. & Andreani, P. (2013). Irregular time series in astronomy and the use of the Lomb-Scargle periodogram. Astronomy and Computing, 1: 5-16. https://doi.org/10.1016/j.ascom.2012.12.001
  • Weedon, G.P. (1989). The detection and illustration of regular sedimentary cycles using Walsh power spectra and filtering, with examples from the Lias of Switzerland. Journal of the Geological Sociery, 146 (1): 133-144. https://doi.org/10.1144/gsjgs.146.1.0133
  • Weedon, G.P. (2003). Time-series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles. Cambridge Univ Press, Cambridge. https://doi.org/10.1017/CBO9780511535482
  • Weedon, G.P. & Jenkyns, H.C. (1999). Cyclostratigraphy and the Early Jurassic timescale: Data from the Belemnite Marls, Dorset, southern England. The Geological Society of America Bulletin, 111: 1823-1840. https://doi.org/10.1130/0016-7606(1999)111<1823:CATEJT>2.3.CO;2
  • Weedon, G.P.; Jenkyns, H.C.; Coe, A.L. & Hesselbo, S.P. (1999). Astronomical calibration of the Jurassic time-scale from cyclostratigraphy in British mudrock formations. Philosophical Transactions of the Royal Society A, 357: 1787-1813. https://doi.org/10.1098/rsta.1999.0401
  • Wierzbowski, H. (2004). Carbon and oxygen isotope composition of Oxfordian Early Kimmeridgian belemnite rostra: palaeoenvironmental implications for Late Jurassic seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 203 (1-2): 153-168. https://doi.org/10.1016/S0031-0182(03)00673-4
  • Wu, Z.; Huang, N.E.,; Long, S.R. & Peng C.K. (2007). On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy Sciences 104, (38): 14889. https://doi.org/10.1073/pnas.0701020104 PMid:17846430
  • Wunsch, C. & Gunn, D.E., 2003. A densely sampled core and climate variable aliasing. Geo-marine Letters, 23 (1): 64-71. https://doi.org/10.1007/s00367-003-0125-2
  • Ziegler, P. A. (1990). Geological atlas of western and central Europe. Shell Internationale Petroleum Maatschappij B.V., The Hague, 239 pp.