Role of bacterial biofertilizers in agriculture and forestry

  1. García-Fraile, Paula
  2. Menéndez, Esther
  3. Rivas, Raúl
Revista:
AIMS Bioengineering

ISSN: 2375-1495

Año de publicación: 2015

Volumen: 2

Número: 3

Páginas: 183-205

Tipo: Revisión

DOI: 10.3934/BIOENG.2015.3.183 WoS: WOS:000215257500006 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: AIMS Bioengineering

Resumen

Many rhizospheric bacterial strains possess plant growth-promoting mechanisms. These bacteria can be applied as biofertilizers in agriculture and forestry, enhancing crop yields. Bacterial biofertilizers can improve plant growth through several different mechanisms: (i) the synthesis of plant nutrients or phytohormones, which can be absorbed by plants, (ii) the mobilization of soil compounds, making them available for the plant to be used as nutrients, (iii) the protection of plants under stressful conditions, thereby counteracting the negative impacts of stress, or (iv) defense against plant pathogens, reducing plant diseases or death. Several plant growth-promoting rhizobacteria (PGPR) have been used worldwide for many years as biofertilizers, contributing to increasing crop yields and soil fertility and hence having the potential to contribute to more sustainable agriculture and forestry. The technologies for the production and application of bacterial inocula are under constant development and improvement and the bacterial-based biofertilizer market is growing steadily. Nevertheless, the production and application of these products is heterogeneous among the different countries in the world. This review summarizes the main bacterial mechanisms for improving crop yields, reviews the existing technologies for the manufacture and application of beneficial bacteria in the field, and recapitulates the status of the microbe-based inoculants in World Markets.

Información de financiación

Authors are thankful to Nicholas Skinner for correcting English style. RR is thankful to the Junta de Castilla y Leon (Regional Government, Grant SA169U14) and MINECO (Central Government, Grant AGL2011-29227). EM acknowledges MINECO (Central Government, Grant AGL2011-29227) for funding her position. PGF is thankful to the European Social Fund and the state budget of the Czech Republic (CZ. 1. 07/2. 3. 00/30. 0003), which funds her position.

Financiadores

  • Junta de Castilla y Leon
    • SA169U14
  • MINECO
    • AGL2011-29227
  • European Social Fund
  • Czech Republic
    • CZ. 1. 07/2. 3. 00/30. 0003

Referencias bibliográficas

  • Dinesh Adhikari, Ima Yudha Perwira, Kiwako S. Araki, Motoki Kubo . Stimulation of soil microorganisms in pesticide-contaminated soil using organic materials. AIMS Bioengineering, 2016, 3(3): 379-388. doi: 10.3934/bioeng.2016.3.379
  • Frank B Dazzo, Youssef G Yanni, Ashley Jones, Abdelgawad Y Elsadany . CMEIAS bioimage informatics that define the landscape ecology of immature microbial biofilms developed on plant rhizoplane surfaces. AIMS Bioengineering, 2015, 2(4): 469-486. doi: 10.3934/bioeng.2015.4.469
  • Bennet Brockhagen, Fabian Schoden, Jan Lukas Storck, Timo Grothe, Christian Eßelmann, Robin Böttjer, Anke Rattenholl, Frank Gudermann . Investigating minimal requirements for plants on textile substrates in low-cost hydroponic systems. AIMS Bioengineering, 2021, 8(2): 173-191. doi: 10.3934/bioeng.2021016
  • Esther Menendez, Paula Garcia-Fraile, Raul Rivas . Biotechnological applications of bacterial cellulases. AIMS Bioengineering, 2015, 2(3): 163-182. doi: 10.3934/bioeng.2015.3.163
  • Sezer Okay, Mehmet Sezgin . Transgenic plants for the production of immunogenic proteins. AIMS Bioengineering, 2018, 5(3): 151-161. doi: 10.3934/bioeng.2018.3.151
  • Merily Horwat, Meggie Tice, Birthe V. Kjellerup . Biofilms at work: Bio-, phyto- and rhizoremediation approaches for soils contaminated with polychlorinated biphenyls. AIMS Bioengineering, 2015, 2(4): 324-334. doi: 10.3934/bioeng.2015.4.324
  • María A. Morel, Andrés Iriarte, Eugenio Jara, Héctor Musto, Susana Castro-Sowinski . Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach. AIMS Bioengineering, 2016, 3(2): 156-175. doi: 10.3934/bioeng.2016.2.156
  • Phuong Tran, Linh Nguyen, Huong Nguyen, Bong Nguyen, Linh Nong , Linh Mai, Huyen Tran, Thuy Nguyen, Hai Pham . Effects of inoculation sources on the enrichment and performance of anode bacterial consortia in sensor typed microbial fuel cells. AIMS Bioengineering, 2016, 3(1): 60-74. doi: 10.3934/bioeng.2016.1.60
  • Ana Paula Guedes Pinheiro, Augusto Bücker, Ana Cláudia Cortez, John Edward Hallsworth, João Vicente Braga de Souza, Érica Simplício de Souza . Vinegar production from Theobroma grandiflorum SCHUM (cupuassu). AIMS Bioengineering, 2021, 8(4): 257-266. doi: 10.3934/bioeng.2021022
  • Pawel Jajesniak, Tuck Seng Wong . From genetic circuits to industrial-scale biomanufacturing: bacterial promoters as a cornerstone of biotechnology. AIMS Bioengineering, 2015, 2(3): 277-296. doi: 10.3934/bioeng.2015.3.277