Fabrication and multifunctional properties of high volume fraction aligned carbon nanotube polymeric composites

  1. Saito, Diego
  2. Wardle, Brian
  3. Garcia, Enrique
  4. Megalini, Ludovico
  5. Hart, Anastasios John
  6. Guzman de Villoria, Roberto 1
  1. 1 Department of Aeronautics and Astronautics, MIT 41-317, 77 Massachusetts Ave., Cambridge
Revista:
Journal of Nano System & Technology

Año de publicación: 2009

Volumen: 1

Páginas: 1-11

Congreso: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference,10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference

Tipo: Artículo

DOI: 10.2514/6.2008-1769 GOOGLE SCHOLAR

Resumen

High volume fraction aligned carbon nanotube (CNT) nanocomposite specimens are fabricated using mechanical densification of CNT forests and capillarity-induced wetting of the forests with several thermoset polymers. Such nanocomposites approach the ideal morphology of collimated aligned fiber systems used in aerospace composites, and have long been expected to exhibit substantial engineering property improvements over existing systems. Polymers used are unmodified and include two aerospace-grade complex thermosets and a UV-curing thermoset used in microfabrication. Mechanical densification of the CNT forests prior to polymer introduction results in uniform nanocomposites. High volume fraction (to ~20%) CNT forests are effectively wet by the thermosets studied. Modulus, hardness, and electrical resistivity are characterized as a function of volume fraction for one of the epoxy systems. Multifunctional properties (modulus, hardness, and electrical conductivity) of the nanocomposites are strongly influenced by CNT volume fraction. Such specimens can be used to explore nano-scale interaction effects such as CNT-CNT contact effects on thermal and electrical conductivities.

Referencias bibliográficas

  • Iijima S., (1991), Nature, 354, pp. 56, 10.1038/354056a0
  • Oberlin A., M., (1976), Journal of Crystal Growth, 32, pp. 335, 10.1016/0022-0248(76)90115-9
  • Garcia, E.J., Hart, J., Wardle, B.L. and A. Slocum, "Composite Materials Reinforced with Long CNTs Grown on the Surfaceof Fibers", AIAA-2006-1854,47th AIAA Structures,Dynamics, and MaterialsConference, Newport,RI, May1-4,2006.
  • Garcia, E., Hart, J., Wardle, B.L., Slocum, A., and D.J. Shim "Aligned Carbon Nanotube Reinforcement of Graphite/epoxy Ply Interfaces", 16th International Conference on Composite Materials (ICCM), Kyoto Japan, July 8-13,2007.
  • Garcia E.J., (2007), Advanced Materials, 19, pp. 2151, 10.1002/adma.200700237
  • Probst O., (2004), Polymer, pp. 4437, 10.1016/j.polymer.2004.04.031
  • Dalmas F., (2005), JPolymSci Part B:Poly Phys, pp. 1186, 10.1002/polb.20409
  • Hart A.J., (2006), Journal of Physical Chemistry B, 110, pp. 8250, 10.1021/jp055498b
  • Garcia E.J., (2008), Long Carbon Nanotubes Grown on the Surface of Fibers for Hybrid Composites
  • Garcia E.J., (2007), Nanotechnology, 18, pp. 165602, 10.1088/0957-4484/18/16/165602
  • Bello D., (2008), Exposure to Nanoscale Particles and Fibers During Fabrication and Machining of Hybrid CNT Advanced Composites
  • Bello D., (2008), Exposure to nanoscaleparticles during CVD growth of CNTs and their subsequenthandling
  • Gilat R.K., (2005), NASA/TM-2005-213595
  • Li B., (2002), Mater.Characterization
  • Bhushan X., (2003), Int.Mater.Rev, 48, pp. 125, 10.1179/095066003225010227
  • Oliver G. M., (2003), Res, 7, pp. 1564
  • Ajayan P.M., Nature447, 2007, pp. 1066
  • Windle A.H., (2007), Composites Science &Technology, 67, pp. 929, 10.1016/j.compscitech.2006.07.037
  • Thostenson E.T., (2005), Composites Science and Technology, 65, pp. 491, 10.1016/j.compscitech.2004.11.003
  • Thostenson E.T., (2001), CompositesScience and Technology, 61, pp. 1899, 10.1016/S0266-3538(01)00094-X
  • Chakrapani N, (2004), Proceedings of the NationalAcademy of Science, 101, pp. 4009, 10.1073/pnas.0400734101
  • Futaba D.N., (2006), Nature Materials, 5, pp. 987, 10.1038/nmat1782
  • Wardle B.L., Fabrication and Characterization of Ultra-High, 2008
  • Wang B.N., (2007), J.PhysicalChemistry C (accepted)
  • Wang B.N., (2007), J.Physical Chemistry C, 111, pp. 5859, 10.1021/jp068895a
  • Saito D.S., (2007), Bachelor's thesis
  • Garcia E.J., (2008), Fabrication and Multifunctional Properties of a Hybrid Laminatewith Aligned Carbon Nanotubes Grown In Situ
  • Yamamoto, N. and B.L. Wardle, "Thermal and Electrical Properties of Hybrid Woven Composites Reinforced with Aligned Carbon Nantoubes", AIAA-2008-1857, 49th AIAA Structures, Dynamics, andMaterials Conference, Schaumburg, IL, April 7-10,2008.
  • Garcia, E.J., Hart, A.J., Wardle, B.L., Slocum, A.H., and R. Guzman de Villoria, "Aligned Carbon Nanotube Reinforcement of Advanced Composite Ply Interfaces", AIAA-2008-1768, 49th AIAA Structures, Dynamics, andMaterials Conference, Schaumburg, IL,April7-10,2008.