PID-fuzzy of DC motors using Raspberry PI

  1. Herrera Aristizábal, Sebastián 1
  2. Hincapié Correa, Julio Alejandro 1
  3. Ríos González, Luis Hernando 1
  4. López Flórez, Sebastián 1
  1. 1 Universidad Tecnológica de Pereira
    info

    Universidad Tecnológica de Pereira

    Pereira, Colombia

    ROR https://ror.org/01d981710

Revista:
Visión electrónica

ISSN: 1909-9746 2248-4728

Año de publicación: 2020

Volumen: 14

Número: 1

Tipo: Artículo

DOI: 10.14483/22484728.16361 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Visión electrónica

Resumen

Este Articulo describe la implementación de un sistema de control difuso (FLC) y un controlador convencional proporcional-integral-derivativo (PID) para la velocidad y torque de un motor DC de potencia media, basado en la variación de corriente de armadura y en el control del ciclo de trabajo. El sistema de control ha sido aplicado a un motor DC de Potencia media, utilizando Python, y un sistema embebido de bajo costo -  Raspberry Pi, dicho trabajo es fundamental dada la importancia de implementar controladores de velocidad y torque que permitirán la optimización de la energía para su correcto funcionamiento lográndose a través de la regulación del ciclo de trabajo aplicado a la potencia del motor DC.

Referencias bibliográficas

  • J. Teeter, M. Chow, and J. J. Brickley, “Use of a Fuzzy Gain Tuner for Improved Control of a DC Motor System with Nonlinearities”, in Proceedings of 1994 IEEE International Conference on Industrial Technology - ICIT '94, pp. 258-262, 1994. https://doi.org/10.1109/ICIT.1994.467117
  • B. Behnam and M. Mansouryar, “Modeling and simulation of a DC motor control system with digital PID controller and encoder in FPGA using Xilinx system generator”, in Proc. 2nd Int. Conf. Instrum. Control Autom, ICA, pp. 104–108, 2011. https://doi.org/10.1109/ICA.2011.6130138
  • S. B. Noor, S. M. Uashi, and M. K. Hassan, “Microcontroller Performance for DC Motor Speed Control System”, in Proceedings. National Power Engineering Conference, PECon, pp. 104–109, 2003. https://doi.org/10.1109/PECON.2003.1437427
  • Raspberry Pi Blog, “raspberry.org”. [Online]. Available at: http://www.Raspberry.org
  • K. Ogata, “Ingeniería de control moderna”, Prentice Hall, pp. 567-596. 2003.
  • W. I. Hameed, and K. A. Mohamad, “Speed control of separately excited dc motor using fuzzy neural model reference controller”, International Journal of Instrumentation and Control Systems (IJICS), vol, 2, no. 4, pp. 27-39, 2012. https://doi.org/10.5121/ijics.2012.2403
  • A. Dorzhigulov, B. Bissengaliuly, B. F. Spencer, J. Kim, and A. P. James, “ANFIS based quadrotor drone altitude control implementation on Raspberry Pi platform”, Analog Integrated Circuits and Signal Processing, vol. 95, no. 3, pp. 435-445, 2018. https://doi.org/10.1007/s10470-018-1159-8
  • C. Jiménez, “Estimación básica de los parámetros del circuito equivalente de la máquina de corriente directa”, pp. 1–4, 2015. [Online]. Available at: https://es.scribd.com/document/257965184/Estimacion-Basica-de-Los-Parametros-Del-Circuito-Equivalente-de-La-Maquina-de-Corriente-Directa
  • U. K. Bansal, and R. Narvey, “Speed control of DC motor using fuzzy PID controller”, Advance in Electronic and Electric Engineering, vol. 3, no. 9, pp. 1209-1220, 2013.
  • S. Salvador, “Determinación de los parámetros de un motor de CD por medición física directa”, pp. 5-8, 2014. [Online]. Available at: https://www.academia.edu/9614705/Obtenci%C3%B3n_de_Par%C3%A1metros_de_un_Motor_de_CD
  • R. Alexander Montenegro, C. Alberto, and F. Perdomo, “Diseño e Implementación de un Control PID Digital para Motor DC”, in 2do. Congreso Virtual de Microcontroladores y sus Aplicaciones, pp. 1–9, 2010.
  • L. Moreno, S. Garrido, and C. Balaguer, “Ingeniería de control. Modelado y control de sistemas dinámicos”, Ed. Ariel, p. 460, 2003.
  • A. O’Dwyer, “Handbook of PI and PID Controller Tuning Rules”, IEEE Control Systems Magazine, vol. 26, no. 1. 2006. https://doi.org/10.1109/MCS.2006.1580157
  • MathWorks, “PID Controller”. [Online]. Available at: https://www.mathworks.com/help/simulink/slref/pidcontroller.html
  • MathWorks, “MATLAB: the language of technical computing, visualization, programming installation guide for UNIX version 5”, Natwick: Math Works Inc., 1996.
  • K. Passino and S. Yurkovich, “Fuzzy control”, Addison Wesley Longman, 1998.
  • MathWorks, “Fuzzy Logic Toolbox”. [Online]. Available at: https://www.mathworks.com/help/fuzzy/
  • L. Zadeh, “Fuzzy Sets”, University of California, Berkeley, California, USA, pp. 19-34, 1996. https://doi.org/10.1142/9789814261302_0001
  • C. D. De Los Ríos and W. Ipanaqué, “Evaluación de estructuras y métodos de ajuste de reguladores PID-difusos”, Comunicaciones aceptadas en las XXVI jornadas de automática, pp. 4–26, 2004.
  • L. Reznik, “Fuzzy Controller” in Victoria University of Technology Melbourne, Australia, Oxford, p. 287, 1997.
  • A. Cobo, “Guía de Raspberry Pi”, 2013. [Online]. Available at: https://hardlimit.com/guia-raspberry-pi/
  • M. Bejarano, “Conexión remota al Raspberry Pi usando SSH”, 2013. [Online]. Available at: http://www.frambuesapi.co/2013/%2009/25/tutorial-5-conexion-remota-al-raspberry-pi-usando-ssh/
  • W. J. Tang, and S. Y. Cao, “A Fast Realization Method of Fuzzy PID Control for DC Motor”, in 37th Chinese Control Conference (CCC), pp. 5131-5135, 2018. https://doi.org/10.23919/ChiCC.2018.8483184
  • A. Robinson, and M. Cook, “Raspberry Pi Projects”, John Wiley & Sons Inc., 2013.
  • J. L. Rincón-Gaviria, “Control PID para el control de velocidad de un motor DC”, thesis, Universidad Tecnológica de Pereira, Colombia, 2014.
  • G. Fischer, “Creativity and Distributed Intelligence”, in Report of Workshop on Creativity Support Tools, pp. 71-73, 2005.
  • M. Boutouba, A. Ougli, and S. Miqoi, “Intelligent control for voltage regulation system via DC-DC Converter using Raspberry Pi 2 board”, Wseas Transactions on Electronics journal, vol. 8, pp. 41-47, 2017.
  • A. Kholid, R. A. Fauzi, Y. Y. Nazaruddin, and E. Joelianto, “Power Optimization of Electric Motor using PID-Fuzzy Logic Controller”, in 6th International Conference on Electric Vehicular Technology (ICEVT), pp. 189-195, 2019. https://doi.org/10.1109/ICEVT48285.2019.8993984
  • F. Moreno, “Diseño de un sistema de control de velocidad de un motor de corriente continua basado en acelerómetros”, Universidad Pontificia Comillas, p. 350, 2010.
  • Autodesk, “EAGLE software”. [Online]. Available at: https://www.autodesk.com/products/eagle/overview
  • Allegro mycrosystems, “ASC711”, pp. 1-16. 2013. [Online]. Available at: https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs711
  • Circuitmaker Environment, “Software by PCB design software”. [Online]. Available at: https://circuitmaker.com/
  • Microchip, "MCP3004/3008", pp. 1–40, 2008. [Online]. Available at: http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
  • D. S. Paulin, M. I. Jean, H. Djalo and E. Joseph, “Virtual Digital Control Scheme for a Duty-Cycle Modulation Boost Converter”, Journal of computer science and control systems, vol. 10, no. 2, pp. 22-27, 2017.